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Summary – Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine principally involved in
the activation of lymphocytes in response to viral infection. TNFα also stimulates the production of
other cytokines, activates NK cells and potentiates cell death and/or lysis in certain models of viral
infection. Although TNFα might be expected to be a protective component of an antiviral immune
response, several lines of evidence suggest that TNFα and other virally-induced cytokines actually
may contribute to the pathogenesis of HIV infection. Based on the activation of HIV replication in
response to TNFα, HIV appears to have evolved to take advantage of host cytokine activation path-
ways. Antibodies to TNFα are present in the serum of normal individuals as well as in certain autoim-
mune disorders, and may modulate disease progression in the setting of HIV infection. We examined
TNFα-specific antibodies in HIV-infected non-progressors and healthy seronegatives; anti-TNFα anti-
body levels are significantly higher in GRIV seropositive slow/non-progressors (N = 120, mean = 0.24),
compared to seronegative controls (N = 12, mean = 0.11). TNFα antibodies correlated positively with
viral load, (P = 0.013, r = 0.282), and CD8+ cell count (P = 0.03, r = 0.258), and inversely with CD4+
cell count (P = 0.003, r = – 0.246), percent CD4+ cells (P = 0.008, r = –0.306), and CD4 :CD8 ratio
(P = 0.033, r = – 0.251). TNFα antibodies also correlated positively with antibodies to peptides cor-
responding to the CD4 binding site of gp160 (P = 0.001, r = 0.384), the CD4 identity region (P = 0.016,
r = 0.29), the V3 loop (P = 0.005, r = 0.34), and the amino terminus of Tat (P = 0.001, r = 0.395); TNFα
antibodies also correlated positively with antibodies to Nef protein (P = 0.008, r = 0.302). The produc-
tion of anti-TNFα antibodies appears to be an adaptive response to HIV infection and suggests the
potential utility of modified cytokine vaccines in the treatment of HIV infections as well as AIDS-related
and unrelated autoimmune and CNS disorders. © 2001 Éditions scientifiques et médicales Elsevier
SAS
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In targeting immune cells for viral infection, HIV
has evolved regulatory mechanisms that permit rapid
deployment in response to immune activation sig-
nals. The same pathways that induce T cell prolif-
eration and macrophage activation are usurped by

HIV to activate viral replication [1-6]. TNFα is a
potent proinflammatory cytokine integral to antivi-
ral immune responses, which induces apoptosis of
virally-infected cells and contributes to cytotoxic T
cell-mediated lysis and lymphocyte and monocyte
differentiation [7]. Interaction of TNFα with cell sur-
face receptors can transduce a variety of intracellu-
lar signals via phospholipase A2, protein kinase C
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and activation of several transcription factors includ-
ing NFΚB [8]. It is well established that the major
enhancer element within the HIV-1 LTR promoter is
comprised of two NFΚB binding sites responsive to
T cell activation and cytokine activation signals [1-6].
These same transcriptional elements are involved in
IL-2 and IL-2R gene expression [3-6]. TNFα pro-
duction results in coordinate activation of certain
inflammatory cytokines, including chemokines, via
autocrine and paracrine mechanisms [9-12]. TNFα
production results in alteration of endothelial cell
monocyte/macrophage interactions, leading to inva-
sion of inflammatory cells into various tissues includ-
ing the central nervous system [12-14]. This process
appears to be a critical pathway in the development
of HIV-associated neurologic disorders, with
increased accumulation of activated monocytes/
macrophages in the CNS compartment.

It is well established that healthy individuals as well
as patients with autoimmune disorders produce natu-
ral autoantibodies against TNFα [15]. Anti-cytokine
autoantibodies (i.e. anti-TNFα and interferon-γ
autoantibodies) appear to play a regulatory role in
the immune response [16], and may serve to coun-
teract the potential deleterious effects of these inflam-
matory mediators in vivo. In order to evaluate the
significance of anti-TNFα autoantibodies in HIV
infection, we produced recombinant human TNFα
as a fusion protein, assayed serum samples from HIV
infected slow/non-progressors and seronegatives in
ELISA, and correlated levels of antibodies to TNFα
with serologic and hematologic evaluation param-
eters.

MATERIALS AND METHODS

Production of the recombinant tumor necrosis
factor α

The cDNA of the mature hTNFα was obtained by
PCR amplification from the plasmid pORF-hTNFα
(Invivogen, San Diego, CA), cloned in the prokary-
ote expression vector pRSET-A (Invitrogen, San
Diego, CA), and confirmed by automated DNA
sequencing. This construct permits expression of
TNFα as a fusion-protein with an N-terminal
polyhistidine-tag, thereby permitting purification by
metal chelate affinity chromatography. Figure 1 illus-
trates the amino acid sequence of the hTNFα fusion-
protein.

The plasmid pRSETA-TNFα was transformed into
E. coli (BL21-DE3 CodonPlus, Stratagene, San
Diego, CA) for protein expression. Bacteria were
grown in one liter of 2X LB media. TNFα fusion
protein expression was induced at O.D. 0.6–0.8 with
1 mM IPTG (Calbiochem, San Diego, CA), and
grown overnight at 37° C and 250 rpm. The culture
(O.D. 1.4) was collected by centrifugation. Pellets
were resuspended in 50 mL of Buffer A (300 mM
NaCl, 50 mM Hepes, pH 7.2, 0.025% Octyl-�-
Glucoside and CHAPS). The cells were disrupted by
sonication using a Branson Sonifier (3X) for 30 s with
5 min on ice between sonication intervals. Homoge-
nate was centrifuged at 14,000 rpm (30,000 g) for
15 min; supernatant was applied to a 5 mL Talont

Metal Affinity Resin column (Clontech, Palo Alto,
CA), and packed in an XK16/20 column (Amersham-
Pharmacia, Piscataway, NJ). The column was washed
with 10 column volumes of Buffer A, followed by 4
column volumes of Buffer A containing 10 mM imi-
dazole, and 6 column volumes of Buffer A contain-
ing 50 mM imidazole. Elution was performed with 5
column volumes of BufferAcontaining 500 mM imi-
dazole. Chromatography was performed throughout
at a flow rate of 1 mL/min using an Acuflow Series
III pump (LabAlliance, State College, PA). Affinity
purified TNFα was collected in 20 mL fractions and
protein containing fractions were pooled. The sample
(15 mL; 2.6 mg/mL) was diafiltered under nitrogen
with five volumes of Buffer B (300 mM NaCl,
50 mM Hepes, pH 7.2) using an Amicon 8050 stirred
cell with a 10,000 NML 45 mm polyethersulfone
membrane (Millipore, Bedford, MA) pretreated with
5% polyethylene glycol reacted with Bisphenol A

Figure 1. Amino acid sequence of the hTNFαr fusion protein. The
fusion domain containing the polyhistidine tag is in italics.
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(Sigma-Aldrich, Steinheim, Germany). The final
preparation (30 mL; 0.8 mg/mL.) was stored in ali-
quots at – 80° C.

Patient samples

Serum from HIV-1-infected non-progressors
(N = 120) were compared with samples from serone-
gative controls (N = 12) for autoantibodies to TNFα.
Slow/non-progressor (S/NP) volunteers were previ-
ously enrolled in the genetic resistance to immuno-
deficiency virus (GRIV) cohort to study genetic and
serologic parameters associated with non-
progression. This cohort, established in France, has
been useful in identifying genetic polymorphisms and
serologic responses associated with non-progression
in the setting of HIV infection [17-22]. The inclu-
sion criteria for S/NPs were as follows: seropositive
for HIV-1 and asymptomatic for more than eight
years, with a CD4+ cell count greater than 500/mm3

without prior antiretroviral therapy. All seropositives
in this group were Caucasians for the purpose of sim-
plifying genetic analysis. Serum samples from HIV-
negative individuals were collected at MCP-
Hahnemann University (Philadelphia, PA) with
informed consent.All seronegatives used in this study
were Caucasians for comparison with the GRIV S/NP
samples.

ELISA assay for TNFα autoantibodies

The recombinant human TNFα, 0.5 µg per well
diluted in 100 µL of 50 mM NaHCO3, pH 9.0, was
immmobilized in Maxisorb™ microtiter plates
(Nunc, Rochester, NY) by overnight incubation at
4° C. Plates were blocked for three hours at room
temperature with 250 µL/well 1X PBS containing 3%
IgG-free BSA (Sigma, St. Louis, MO). Plates were
washed 6X in 1X PBS with 0.05% Tween 20 using
an Ultrawash Plus plate washer (Dynex, Chantilly,
VA). Diluted sera (1:500, 50 µL per well) were incu-
bated overnight at 4° C while shaking. Plates were
washed as before and Protein G-HRP (50 mL, 1:1000
dilution; Biorad, Hercules, CA) was added and incu-
bated for 2 h at room temperature while shaking.
Plates were washed again as before and developed
by addition of TMBlue (Intergen, Milford, MA),
50µL per well. The reaction was stopped after 5 min
by the addition of 50 µL 2N HCl, and plates were

read at ODλ450 on an MRX microplate reader with
Revelation software (Dynex, Chantilly, VA).

Statistical analysis

Statistical analysis, including ANOVA and both para-
metric and nonparametric correlations, was per-
formed using SPSS 10.0 software for Windows
(SPSS Inc., Chicago, IL). Briefly, TNFα antibodies
in both GRIV S/NP and seronegative controls were
determined to be normally distributed using the
Kolmogorov-Smirnov test for normality; ANOVA
was performed to test for significant differences
between TNFα antibody levels of GRIV S/NP rela-
tive to seronegative controls. TNFα antibody levels
in GRIV S/NP were correlated with peripheral blood
lymphocyte and T cell subset counts, antibody
responses to viral proteins including p24, Tat and Nef,
and both Tat and gp120-derived peptides. Antibod-
ies to peptide 34, as well as CD4 and CD8 cell counts,
and the percent CD4 positive cells were determined
to be normally distributed by Kolmogorov-Smirnov.
In contrast, viral load, CD4:CD8 ratio, and antibod-
ies to peptides 32, 135, 164, 243, 356, 385, and Tat
and Nef fusion proteins were not normally distrib-
uted. Correlations between TNFα antibodies and
viral load, CD4 count, CD4 percent, CD4:CD8 ratio,
antibodies to peptides 32, 34, 243, 356, and Nef pro-
tein were significant using both parametric and non-
parametric tests; Pearson’s coefficients and P-values
are reported in the text. Although the correlation
between TNFα antibodies and CD8 cell count only
passed the parametric Pearson procedure, it was
deemed significant because both sets of data were
normally distributed. Similarly, although correlations
between antibodies to TNFα and peptides 135 and
385 only passed the non-parametric Kendall and
Spearman procedures, they were deemed significant
because antibodies to both peptides 135 and 385 were
not normally distributed; Spearman’s coefficients and
P-values were reported in the text.

RESULTS AND DISCUSSION

The T cell depletion characteristic in AIDS may be
due in part to TNFα dysregulation; TNFα secretion
contributes to wasting and T cell anergy, and can pro-
vide a pro-apoptotic signal for both CD4+ and CD8+
T cells. TNFα also has been implicated in HIV
encephalophathy and HIV-associated progressive
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multifocal leukoencephalopathy, as well as other
CNS disorders [12-14, 23-27]. In HIV infection,
TNFα production is elevated as demonstrated by leu-
kocyte TNFα mRNA levels, as well as membrane-
bound and circulating forms of TNFα [28-32]. Cir-
culating soluble TNFα receptor is also elevated and
most likely antagonizes the effects of circulating and
membrane-bound TNFα [28, 30, 33, 34]. The impor-
tance of activation of TNFα synthesis in the patho-
genesis of HIV infection has been further empha-
sized by studies demonstrating reduced TNFα
production with successful application of highly
aggressive antiretroviral therapy (HAART) [35-38].

HIV infection increases TNFα gene expression by
interaction of the envelope glycoprotein with CD4
receptors and coreceptors [39-41], as well as by Tat-
mediated activation [14, 42, 43]. TNFα in turn exerts
complex effects on T cells, such as stimulating pro-
liferation, and inducing or preventing apoptosis [44].
HIV-induced TNFα dysregulation is involved in
apoptosis of CD4+ cells through a process apparently
enhanced by TNFα-mediated upregulation of Fas
ligand [45-47]. TNFα activation is also involved in
CD8+ cell apoptosis in AIDS through interaction of
membrane-bound TNFα on macrophages and TNF
receptors on CD8+ cells [48]. TNFα also appears to
contribute to polyclonal B cell proliferation in HIV
infection [49, 50]. Although TNFα increases HIV
replication at the level of transcription, TNFα may
actually suppress CCR5 tropic virus infection via
induction of � chemokines and inhibition of CCR5
gene expression, as demonstrated with the monocyte-
tropic NSI virus [9]. In contrast, TNFα upregulates

the CXCR4 receptor on T cells, increasing the sus-
ceptibility to infection with cytopathic, syncytia-
inducing (SI) viruses [51]. In view of the role of SI
variants in the pathogenesis of HIV infection, TNFα
may play a critical role in viral evolution toward
pathogenic variants. Based on the functional proper-
ties of TNFα in facilitating HIV viral replication, evo-
lution of pathogenic variants and dysregulation of
the immune system, autoantibodies to TNFα may be
an advantageous host response to viral infection and
chronic TNFα upregulation.

In order to study the levels of TNFα autoantibod-
ies, we expressed and purified recombinant human
TNFα for use in ELISA for autoantibodies in serum
from HIV-positive volunteers. TNFα was expressed
in soluble form in E. coli after overnight induction
with IPTG. From one liter of culture, 24 mg of recom-
binant protein (rhTNFα) was purified by affinity
chromatography using Talon resin (Qiagen, Valen-
cia, CA). Figure 2 illustrates the protein profiles of
the extract and purified fractions obtained during the
purification process. A major band of 22 kDa was
visualized in agreement with the predicted migration
of the hTNFα fusion protein. The slower-migrating
band presumably represents the TNFα trimer
(45–55 kDa); the trimer represents the active form
of this protein in solution [52]. Antigenicity of the
unmodified fusion protein was confirmed by West-
ern blot (figure 2), and in ELISA (data not shown)
using goat anti-TNFα antibody (R & D Systems,
Minneapolis, MN).

The purified rhTNFα was used in ELISA to deter-
mine the level of autoantibodies from HIV-infected

Figure 2. Expression and purification of hTNFα fusion protein under native conditions using metal chelate affinity chromatography. A) Coo-
massie stain of 14% SDS-PAGE of 5 mL Talon column load, flow-through, and 10 mM and 50 mM Imidazole washes. B) Coomassie stain of
14% SDS-PAGE of 500 mM Imidazole elution. The main band is a monomer of approximately 22 kDa; the less intense band of approximately
45–55 kDa is presumably the TNFα trimer. C) DAB-stained Western blot of 14% SDS-PAGE of load, flow-through, 50 mM Imidazole wash,
and 500 mM Imidazole elution using anti-HisG-HRP monoclonal antibody at 1:5000 dilution (Invitrogen, San Diego, CA).
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S/NPs and controls. As shown in figure 3, the level
of autoantibodies to TNFα was significantly higher
(P = 0.005; ANOVA) in the seropositive group
(N = 120, mean = 0.244), relative to the seronega-
tive control group (N = 12, mean = 0.114). Among
S/NPs, autoantibodies to TNFα positively correlated
with viral load (P = 0.013, Pearson = 0.282), and
with CD8+ cell number (P = 0.03, Pearson = 0.258).
Autoantibodies to TNFα correlated inversely with
CD4+ cell number (P = 0.003, Pearson = –0.246),
percent CD4+ (P = 0.008, Pearson = – 0.306). No
significant correlation with age, sex, or total lympho-
cyte count was observed. Correlation of anti-TNFα
antibodies with other antibody responses to Tat and
gp160 peptides are shown in table I [53-59]. TNFα
antibodies positively correlated with antibodies to
gp160 (a.a. 418–444) peptide 32 (P = 0.0001, Pear-
son = 0.467), and peptide 34 (P = 0.001, Pear-
son = 0.384), both corresponding to the CD4 bind-
ing site. Correlations were also observed with
antibodies to peptide 243 containing the ‘SLWDQ’
CD4 identity region of gp120 (P = 0.016, Pear-
son = 0.29), and peptide 356 containing a reiterated
SLWDQ sequence (P = 0.0001, Pearson = 0.429), as
well as peptide 135 (P = 0.005, Spearman = 0.34),
encoding the V3 loop (a.a 290–323). There was no
correlation with antibodies to several other regions
of gp160 (peptides 163, 12, and 23), as illustrated in
table I. However, as shown in table I, a correlation
between TNFα antibodies and anti-Nef antibodies
was observed (P = 0.008, Pearson = 0.302). There
was no correlation between TNFα antibodies and
antibodies to recombinant N-terminal polyhistidine
fusion Tat protein. Interestingly, a correlation was
observed with antibodies to the amino-terminal
region of Tat (P = 0.001, Spearman = 0.395), using
peptide 385 (a.a. 1–15 of Tat).

Anti-TNFα antibodies may be a natural response
to excess TNFα generated as a result of HIV infec-
tion. These autoantibodies may serve to mollify the
harmful effects of TNFα continually produced by
virally-infected cells. The effect of TNFα in activat-
ing HIV replication at the level of transcription is
well established via the NFΚB pathway [2, 59, 60].
It appears that in contrast to the usual antiviral func-
tion of TNFα, this cytokine pathway is activated by
viral infection and utilized to promote viral infection
and injury to the immune system and CNS. The
release of soluble TNF receptors in circulation is evi-

dent in HIV infection and may provide one means of
reducing the harmful effects of TNFα activation.
Here we demonstrate the presence of autoantibodies
to TNFα in HIV-infected S/NPs, which may provide
an additional adaptive response to TNFα dysregula-
tion.

In view of the involvement of TNFα in virus rep-
lication and pathogenesis, the development of a vac-
cine designed to elicit antibodies to TNFα may help
restore immune function and at the same time reduce
viral replication. Aside from the potential utility of a
vaccine to TNFα in HIV infection, this approach may
have utility in a variety of clinical disorders where
cytokine imbalance contributes substantially to the
disease process. For example, in hairy cell leukemia,
TNFα may be important for hairy cell leukemia
growth [61, 62]. TNFα has been implicated in the
pathogenesis of Crohn’s disease and other inflamma-
tory bowel diseases and is the target of two thera-
pies: etanercept, a soluble TNF receptor linked to the
Fc portion of human IgG1 [63], and infliximab, a

Figure 3. Box-plot of results from ELISA for serum antibodies (IgG)
to TNFα. Anti-TNFα antibodies are significantly elevated
(P = 0.005, ANOVA), in GRIV S/NPs (N = 120, mean = 0.24), com-
pared to seronegative controls (N = 12, mean = 0.11). The mean OD
of each group is indicated in the box-plot with a cross; the numeri-
cal value is also given. Dark horizontal lines connected by a vertical
line within each box represent the standard error of the mean for
each group. The upper and lower boundaries of the boxes represent
the 75th and 25th percentiles, respectively. Whiskers represent the
range of values observed in each group. Outliers are indicated with
circles.
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Table I. Synthetic HIV polypeptides used to detect antibody titers in the GRIV non-progressor population.

HXB2 position Peptide Amino acid sequence Source Presumptive role Correlation TNFα autoantibodies
number Pearson Kendall Spearman

Coeff. P-value Coeff. P-value Coeff. P-value

gp160294-321 12 INCTRPNYNKRKRIHGPGRAFYTTK MN isolate
[53]

Env V3 loop frag-
ment

0.14 0.259 0.075 0.369 0.116 0.348

gp160584-604 23 ERYLKDQQLLGIWGCSGKLIC BRU isolate
[54]

C-terminal frag-
ment of gp120

0.14 0.256 0.071 0.391 0.115 0.349

gp160418-444 32 CRIKQIINMWQGVGKAMYAPPIEGQIN Z6 isolate
[55]

CD4 binding site
of gp120

0.467 0.0001 0.312 0.0001 0.438 0.0001

gp160418-444 34 CRIKQIINMWQEVGKAMYAPPISGQIR BH8 isolate
[56]

CD4 binding site
of gp120

0.384 0.001 0.263 0.002 0.391 0.007

gp160290-323 135 FLLAVFCTRPNYNKRKIHIGPGRAFYT-
TKNIIG

MN isolate Env V3 loop frag-
ment

0.148 0.234 0.24 0.004 0.34 0.005

gp160837-856 163 CRAIRHIPRRIRQGLERILL BRU isolate C-terminal frag-
ment of gp41

0.143 0.244 0.081 0.33 0.096 0.437

gp160110-125 243 SLWDQSLKPCVKLTPL MN isolate CD4 identity of
gp120 [57]

0.29 0.016 0.221 0.008 0.315 0.009

gp160110-125
(reiterated)

356 SLWDQSLWDQSLWDQSLWDQ MN isolate Reiterated
SLWDQ frag-
ment of gp160
CD4 identity

0.429 0.0001 0.0367 0.0001 0.547 0.0001

gp160289-305 362 NQSVEINCTRPNNNTRK BRU isolate Fas identity of
gp120

0.119 0.335 0.085 0.307 0.116 0.345

Tat1-15 385 MEPVDPRLEPWKHPG MN isolate N-terminal frag-
ment of transacti-
vating regulatory
protein

0.157 0.2 0.283 0.001 0.395 0.001

Tat Fusion protein III B Transactivator 0.006 0.96 0.012 0.881 0.018 0.879
Nef Fusion

protein
pSVL4-3 CD4 downregu-

lation and patho-
genesis

0.302 0.008 0.245 0.002 0.344 0.002
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humanized monoclonal antibody [64, 65]. TNFα has
also been implicated in the pathogenesis of rheuma-
toid arthritis [66], sarcoidosis [67], sepsis and myelo-
dysplastic syndromes [68].

The use of anti-cytokine vaccines in the form of
‘kinoids’ has been previously proposed [69, 70]. This
strategy has provided encouraging results in a murine
model of experimental cachexia and type II collagen-
induced arthritis using a chimeric TNFα vaccine con-
taining immunodominant Th epitopes [71]. The appli-
cation of TNFα vaccine strategies may provide a
therapeutic approach to the treatment of HIV infec-
tion as well as a wide variety of clinical disorders.

CONCLUSIONS

We produced and purified a recombinant TNFα
fusion protein to detect autoantibodies to TNFα in
HIV-infected slow/non-progressors (S/NPs). Anti-
TNFα antibodies are significantly elevated in HIV-
infected non-progressors, who are naïve to antiretro-
viral therapy, compared to seronegatives. Because
TNFα activates viral replication and induces immune
dysregulation, the ability of the host to interfere with
chronic TNFα upregulation may be important for pre-
vention of disease progression. Vaccine strategies
designed to boost these natural anti-cytokine autoan-
tibodies comprise important therapeutic venues for
AIDS treatment. Further studies will be required to
determine if anti-TNFα antibodies are indeed a ben-
eficial host response and to evaluate the concept of a
TNFα-targeted vaccine.
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