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M A J O R A R T I C L E

Multiple-Cohort Genetic Association Study Reveals
CXCR6 as a New Chemokine Receptor Involved
in Long-Term Nonprogression to AIDS

Sophie Limou, Cédric Coulonges, Joshua T. Herbeck, Daniëlle van Manen, Ping An, Sigrid Le Clerc,
Olivier Delaneau, Gora Diop, Lieng Taing, Matthieu Montes, Angélique B. van’t Wout, Geoffrey S. Gottlieb,
Amu Therwath, Christine Rouzioux, Jean-François Delfraissy, Jean-Daniel Lelièvre, Yves Lévy, Serge Hercberg,
Christian Dina, John Phair, Sharyne Donfield, James J. Goedert, Susan Buchbinder, Jérôme Estaquier,
François Schächter, Ivo Gut, Philippe Froguel, James I. Mullins,a Hanneke Schuitemaker,a Cheryl Winkler,a

and Jean-François Zagurya

Background. The compilation of previous genomewide association studies of AIDS shows a major polymor-
phism in the HCP5 gene associated with both control of the viral load and long-term nonprogression (LTNP) to
AIDS.

Methods. To look for genetic variants that affect LTNP without necessary control of the viral load, we reanalyzed
the genomewide data of the unique LTNP Genomics of Resistance to Immunodeficiency Virus (GRIV) cohort by
excluding “elite controller” patients, who were controlling the viral load at very low levels (!100 copies/mL).

Results. The rs2234358 polymorphism in the CXCR6 gene was the strongest signal ( ; odds ratio,�7P p 2.5 � 10
1.85) obtained for the genomewide association study comparing the 186 GRIV LTNPs who were not elite controllers
with 697 uninfected control subjects. This association was replicated in 3 additional independent European studies,
reaching genomewide significance of . This association with LTNP is independent of the�10P p 9.7 � 10combined

CCR2–CCR5 locus and the HCP5 polymorphisms.
Conclusions. The statistical significance, the replication, and the magnitude of the association demonstrate

that CXCR6 is likely involved in the molecular etiology of AIDS and, in particular, in LTNP, emphasizing the
power of extreme-phenotype cohorts. CXCR6 is a chemokine receptor that is known as a minor coreceptor in
human immunodeficiency virus type 1 infection but could participate in disease progression through its role as
a mediator of inflammation.

Previous genomewide association studies (GWASs) of

AIDS have revealed a major association involving a

genetic polymorphism within the human leukocyte

antigen region, the rs2395029 HCP5 single-nucleotide

polymorphism (SNP), which tracks HLA-B*5701. This
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SNP was associated with viral load control through

analysis of human immunodeficiency virus type 1

(HIV-1) seroconverters [1, 2] and by the comparison

of patients with long-term nonprogression (LTNPs)

with uninfected control subjects as well [3]. LTNPs are

a small percentage (1%–5%) of HIV-1 seroconverters

[4–6] and thus constitute a powerful contrasting tool

to unravel new genetic factors associated with AIDS

progression. Of the LTNPs in the Genomics of Resis-

tance to Immunodeficiency Virus (GRIV) cohort, pa-

tients carrying the HCP5 rs2395029-G allele exhibited

a significantly lower viral load than the rest of the co-

hort [3]. Only a minority (ie, 25%) of the GRIV LTNPs

exhibited effective viral load control (ie, a very low viral

load of !100 copies/mL). Because viral load is known

to account for only 34% of the variability in the time

to a CD4 T cell decrease of !200 cells/mL [7], we decided

to perform a new analysis of the genomewide data for
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GRIV LTNPs by excluding these “elite controller” subjects

(subjects who had a viral load of !100 copies/mL). The aim

of the current study was thus to focus on genetic variations

affecting LTNP without necessarily controlling the viral load

at a very low level. The result is that we have indeed identified

a new specific signal in the CXCR6 gene and have replicated

this finding in 3 additional independent cohorts of European

descent.

METHODS

The GRIV Study: Participants, Genotyping, and Analysis

The GRIV cohort. The GRIV study cohort and methods were

described in detail in previously published work on the ge-

nomewide association study of LTNPs [3]. The GRIV cohort

was established in France in 1995 to generate a large collection

of DNAs for genetic studies seeking to identify host genes as-

sociated with rapid and LTNP to AIDS [8–11]. Only white

people who were of European descent and were living in France

were eligible for enrollment, to reduce confounding by pop-

ulation substructure. The LTNPs were seroprevalent subjects

who were included on the basis of their main clinical outcomes,

CD4 T cell count, and time to disease progression: asymptom-

atic HIV-1 infection for 18 years, no receipt of antiretroviral

treatment, and a CD4 T cell count consistently 1500 cells/mm3.

Among those in the LTNP group ( ), viral load (ie,n p 275

the plasma HIV-1 RNA concentration) at the time of inclusion

could be assessed for 248 individuals. Of these 248 individuals,

186 had a viral load 1100 copies/mL. All subjects provided

written, informed consent before their enrollment in the GRIV

genetic association study.

The control group. The Data from an Epidemiological

Study on Insulin Resistance Syndrome (DESIR) program was

a 9-year follow-up study designed to clarify the development

of the insulin resistance syndrome. During 1994–1996, subjects

were recruited from volunteers insured by the French social

security system, which offers periodic health examinations free

of charge [12]. This control group was comprised of 697 non-

obese and normoglycemic individuals, and all were French, of

European descent, and HIV-1 seronegative.

Genotyping method and quality control. The GRIV cohort

and the control group were genotyped using the Illumina In-

finium II HumanHap300 BeadChips (Illumina). Genotyping

quality was assessed using BeadStudio software (version 3.1;

Illumina). Missing data (12%), low minor allele frequency

(!1%), and deviations from Hardy-Weinberg equilibrium in

the control group ( ) were excluded from analysis�3P ! 1.0 � 10

during these quality control steps. Moreover, identification of

potential population stratification was identified using Struc-

ture software (version 2.2) [13], by producing a quantile-quan-

tile plot (see Figure A1A in the Appendix, which appears only

in the electronic version of the Journal) and by computing the

genomic inflation factor l. Overall, little effect of stratification

was observed, and 283,637 SNPs could be tested statistically

for association with LTNP.

Statistical analysis. For each SNP, we performed a stan-

dard case-control analysis, using Fisher’s exact tests (with Plink

software [14]) to compare allelic distributions between LTNPs

and the control subjects. Bonferroni corrections were made to

account for multiple comparisons.

SNP imputation. Untyped SNPs present in the HapMap

database of chromosome 3 were imputed for all GRIV patients

and control subjects, by use of Impute software (version 2.1)

[15] and the HapMap release 21 phased data for the white

population (CEU) as the reference panel [16].

CXCR6 genotyping by PCR sequencing. Primers and con-

ditions used for polymerase chain reaction (PCR) amplifica-

tions were standard. Sequencing reactions were performed ac-

cording to the Dye Terminator method by use of an ABI Prism

3730XL DNA Analyzer (Applied Biosystems). Alignment, SNP

discovery, and genotyping were performed using the software

Genalys, which was developed by the Commissariat à l’Énergie

Atomique/Centre National de Génotypage [17].

Haplotype inference. Haplotype inference was obtained us-

ing the rapid and accurate Shape-IT algorithm [18].

Bioinformatics exploration. To further explore the asso-

ciations observed, we tried to identify modifications in mes-

senger RNA (mRNA) expression (Genevar [19] and Dixon [20]

databases), splicing (NetGene2 [21]), polyadenylation (polyAH

[22] and polyApred [23]), and transcription factor–binding

sites (SignalScan [24], TESS [25], and TFSearch [26], derived

from the TRANSFAC database).

Replication in the Amsterdam Cohort Study: Participants,
Genotyping, and Analysis

The Amsterdam Cohort Study (ACS) participants and methods

were described in detail elsewhere [27]. In the present study,

335 HIV-1–infected homosexual men from ACS were analyzed

for the course of HIV-1 infection using AIDS-related death as

an end point. AIDS-related death is defined as death with AIDS-

related malignancy, death with AIDS opportunistic infections,

or death with an AIDS-related cause not specified by the treat-

ing physician.

The ACS rs2234358 genotyping data were obtained using

Illumina Infinium II HumanHap300 BeadChips (Illumina).

Quality control filters were applied to ensure reliable genotyping

data. Potential population stratification was also analyzed using

Structure software (version 2.2) [13], and 19 participants were

thus excluded from further analyses ( ) because theyn p 316

differed significantly from the HapMap white population.

Statistical analysis was performed by Kaplan-Meier survival

analysis and determination of the log rank P value under the
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genotypic model, by use of SPSS software (version 16.0; SPSS)

and the R package [28].

Because the viral load (ie, the plasma HIV-1 RNA concen-

tration) and the CD4 T cell count were assessed during routine

clinical follow-up, we could identify the ACS LTNPs who

matched the GRIV definition and exhibited a viral load of 1100

copies/mL ( ). LTNP status was easily determined forn p 31

seroconverters because the date of seroconversion was known,

and this was also the case for seroprevalent subjects, because

the time of seropositivity was imputed (on average, at 18

months before enrollment).

Replication in the Multicenter AIDS Cohort Study: Participants,
Genotyping, and Analysis

Multicenter AIDS Cohort Study (MACS) participants and

methods previously have been described in detail elsewhere

[29]. GWAS data were collected from 156 HIV-1–infected white

homosexual men, with time to clinical AIDS used as an end

point. This panel was chosen to be enriched with extreme AIDS

progression phenotypes.

The MACS rs2234358 genotyping data were obtained using

the Affymetrix GeneChip Human Mapping 500K Array (Af-

fymetrix), in which the rs2234358 SNP is tagged by rs4682799

( ). Quality control filters were applied to ensure reliable2r p 1

genotyping data, and population stratification was also checked.

Statistical analysis was performed by Kaplan-Meier survival

analysis and Cox proportional regression determination of the

P value under the genotypic model using the R package.

As with the ACS, viral load (the plasma HIV-1 RNA con-

centration) and CD4 T cell count were assessed during routine

clinical follow-up. We could extract 59 MACS LTNPs, selected

from among seroconverters and seroprevalent subjects, who

matched the GRIV definition and exhibited a viral load of 1100

copies/mL.

Replication in the USA HIV-1 Cohort: Participants, Genotyping,
and Analysis

USA HIV-1 cohort patients and methods previously were de-

scribed in detail elsewhere [30]. For this study, 556 HIV-1 se-

roconverters of European ancestry were collected from 4 USA-

based natural history HIV/AIDS longitudinal cohorts (MACS,

San Francisco City Clinic Cohort, Multicenter Hemophilia Co-

hort Study, and Hemophilia Growth and Development Study),

with AIDS-related death used as an end point. Of importance,

the 556 USA HIV-1–infected participants did not include sub-

jects overlapping with the 156 MACS participants.

The USA HIV-1 cohort rs2234358 genotyping data were ob-

tained using commercial TaqMan genotype assays (with assay

ID C_1929536_1; Applied Biosystems). Conformity to the ge-

notype frequencies expected under Hardy-Weinberg equilib-

rium was checked.

Statistical analysis was performed by Kaplan-Meier survival

analysis and Cox proportional regression for determination of

the P value under the genotypic model using the statistical SAS

package (version 9.13; SAS Institute).

Independence from the CCR2–CCR5 Locus and HCP5
Polymorphisms

The genotypic data were available for the known CCR2–CCR5

locus and HCP5 polymorphisms in the GRIV, MACS, and USA

HIV-1 cohorts, and it was thus possible to assess the indepen-

dence of the rs2234358 SNP from these polymorphisms.

For the GRIV cohort, multivariate logistic regression analysis

was used to adjust effects of covariates CCR2–64I, CCR5-D32,

CCR5-P1, and HCP5 rs2395029. The same approach was done

for the MACS and USA HIV-1 cohorts but by fitting to the

data a linear model instead of a logistic model. The inde-

pendent effect of the rs2234358 SNP on disease phenotype

was confirmed by adjusting the model with these covariates:

the P values that were obtained were similar with and without

the covariate analysis.

RESULTS

After quality control tests, a case-control analysis using Fish-

er’s exact tests was performed to compare allelic distributions

of the 283,637 SNPs between the GRIV LTNPs exhibiting a

detectable viral load (1100 copies/mL) ( ) and unin-n p 186

fected controls ( ) (see Methods). The strongest asso-n p 697

ciation was found for rs2234358, with a P value close to the

Bonferroni threshold for genomewide significance�71.7 � 10

(see Figure A1B in the Appendix, which appears only in the

electronic version of the Journal): (odds ratio�7P p 2.5 � 10

[OR], 1.85 [95% confidence interval {CI}, 1.46–2.36]). The

rs2234358-T allele was associated with not being an LTNP

(36.83% in LTNPs vs. 51.94% in controls) (Figure 1A). This

allele was not associated with acquisition of HIV-1 infection,

because its frequency was similar in seropositive and control

groups: 51.16% among GRIV rapid progressors [31], 48.59%

in the ACS, 51.92% in the MACS, 48% in the USA HIV-1

cohort, 54.9% in the Dutch control population (CTRACS),

48.3% in the Illumina controls (CTRIllumina), and 50.9% in

HapMap CEU (see Figure A2 in the Appendix, which appears

only in the electronic version of the Journal).

The rs2234358 SNP lies within the CXCR6 gene in a region

of chromosome 3 that is rich in genes encoding chemokine

receptors, and it is notably positioned 422 kb from the well-

known CCR5 gene [32] (Figure 2A). To eliminate possible

tracking effects, we evaluated a potential association between

the CXCR6 signal and the CCR2–CCR5 haplotypes (D32, P1,

and 64I) previously associated with the course of HIV-1 disease

[9, 32–33]. First, the rs2234358 SNP had no linkage disequi-

librium (LD, ) with any of the CCR5-D32, CCR5-P1,2r ! 0.1
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Figure 1. Effect of rs2234358 in the Genomics of Resistance to Immunodeficiency Virus (GRIV), Amsterdam Cohort Study (ACS), Multicenter AIDS
Cohort Study (MACS), and USA HIV-1 study groups. A, Allelic frequency of rs2234358-T in the GRIV long-term nonprogressor (LTNP) population
( ) and the control group (CTR) ( ). Frequencies are also given for the 31 ACS subjects with LTNP (ACS LTNPs), for the remaining 285n p 186 n p 697
ACS participants (ACS*), for the 59 MACS subjects with LTNP (MACS LTNPs), and for the remaining 97 MACS participants (MACS*). B, Kaplan-Meier
survival curve derived from the ACS cohort for the time to AIDS-related death. Genotypes GG (green) ( ), GT (blue) ( ), and TT (black)n p 76 n p 171

. C, Kaplan-Meier survival curve derived from the MACS cohort for time to clinical AIDS. Genotypes GG (green) ( ), GT (blue) ((n p 69) n p 45 n p
), and TT (black) ( ). D, Kaplan-Meier survival curve derived from the USA HIV-1 cohort for time to AIDS-related death. Genotypes GG (green)72 n p 39

( ), GT (blue) ( ), and TT (black) ( ).n p 140 n p 297 n p 119

or CCR2–64I haplotypes. Second, we could not find any epi-

static effects between rs2234358 and any of these haplotypes,

by use of either Plink software [14] or logistic regression using

CCR2-CCR5 haplotypes as covariates (version 2.1) (see Meth-

ods). Third, the HapMap LD for whites did not reveal any SNP

with a high LD ( ) beyond the CXCR6 locus. Of note,2r 1 0.9

we also did not observe an epistatic effect between rs2234358

and the chromosome 6 rs2395029 HCP5/HLA-B*5701 signal.

This CXCR6 signal thus represents a new association with LTNP,

independent from the well-known CCR2–CCR5 and HCP5/

HLA-B*5701 associations. Of interest, we inferred the SNP dis-

tribution over the entire chromosome 3, using Impute software

(see Methods). Instead of the 20,000 genotyped SNPs present

in the Illumina HumanHap300 BeadChip in chromosome 3, a
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Figure 2. A, Genetic map of the CXCR6 gene region. CXCR6 is localized within the 14th intron of a predicted gene, FYCO1. B, Genetic map of the
CXCR6 gene. Exons and untranslated regions are symbolized by full and empty rectangles, respectively. The positions of the ATG and STOP codons
are indicated by a triangle (�) and an asterisk (*), respectively. All single-nucleotide polymorphisms (SNPs) covered by the polymerase chain reaction
sequencing study are represented, and the rs2234358 SNP of interest is shown in boldface type. The 3 promoter haplotypes in high linkage disequilibrium
(LD) with rs2234358 ( ) correspond to 2-SNP haplotypes composed of the rs2234350 SNP (�), with either one of the SNPs denoted by the +2r p 0.97
symbol (these 3 latter SNPs exhibit ).2r p 0.99

total of 176,000 SNPs could be imputed for which we could

not identify a P value better than the one exhibited for

rs2234358. The attributable risk for rs2234358-T variant is very

strong, because it explains 12% of the prevention of LTNP. For

comparison, the attributable risk for CCR5-D32 is 5.1% in the

GRIV LTNP cohort.

The rs2234358 signal was replicated in 3 independent ad-

ditional cohort studies of white people of European descent

that also evaluated for AIDS progression phenotype (after re-

moval of stratification outliers; see Methods): (1) the European

ACS cohort ( ) ( ) (Figure 1B), (2) a Eu-�2n p 316 P p 2.3 � 10

ropean descent subgroup of the American MACS cohort en-

riched in extreme phenotypes ( ) ( ) (Fig-�3n p 156 P p 4.2 � 10

ure 1C), and (3) a pool of European American HIV-1 cohorts

( ) ( ) (Figure 1D and Table A1, the latter�3n p 556 P p 8.6 � 10

of which may be found in the Appendix, which appears only

in the electronic version of the Journal). As shown in Figure

1, the rs2234358-T allele favored progression in all of these

cohorts, which is in agreement with a prevention of LTNP.

Overall, the combined P value computed by the Fisher method

between the 4 cohorts (GRIV, ACS, MACS, and USA HIV-1)

passed the Bonferroni genomewide significance threshold:

.�10P p 9.7 � 10combined

It was surprising to observe significant but rather weak P

values in all cohorts except the GRIV cohort, so we assessed

whether the effect was specifically amplified in the LTNP sub-

population. We identified 31 and 59 LTNPs fulfilling the GRIV

definition and with a detectable viral load (1100 copies/mL)

in the ACS and MACS cohorts, respectively. In these groups,

the rs2234358-T allele frequency was ∼40%, which is similar

to that found among the GRIV LTNPs (Figure 1A). Because

no LTNP from these 3 cohorts differed significantly from the

HapMap white population, according to the Structure analysis

[13] (see Figure A3B in the Appendix, which appears only in

the electronic version of the Journal), the ACS and MACS

LTNPs were added to those in the GRIV cohort, and we com-

puted a P value comparing this extended LTNP case group

( ) with the control group ( ). The P value againn p 276 n p 697

reached genomewide significance: (OR, 1.77�8P p 2.1 � 10

[95% CI, 1.44–2.18]), confirming the association of rs2234358-

T with prevention of LTNP (Table A1, which may be found in

the Appendix, which appears only in the electronic version of

the Journal). Of importance, several additional control groups

were tested and exhibited a similar allele frequency for

rs2234358-T (see Figure A2 in the Appendix, which appears

only in the electronic version of the Journal).

To further explore this association, we resequenced the entire

CXCR6 gene to detect additional variants (Figure 2B and Table

A2, the latter of which may be found in the Appendix, which

appears only in the electronic version of the Journal): rs2234358

remained the SNP exhibiting the strongest association. Inter-

estingly, using Shape-IT software (version 2.0) to compute hap-

lotypes [18], we found several haplotypes comprising CXCR6

promoter SNPs in high LD ( ) with rs2234358 (Figure2r p 0.97

2B).

The rs2234358 SNP is located in the 3′ untranslated region

of CXCR6, located 42 bp downstream from the termination

codon (Figure 2B), and could thus influence gene expression,

mRNA stability, mRNA regulation, or mRNA splicing. Ac-

cording to the Dixon or Genevar mRNA expression databases,

none of the genotyped SNPs are predicted to affect CXCR6 or

any other chromosome 3 gene expression, and bioinformatics

methods failed to predict a modification of splicing or poly-

adenylation sites (see Methods). Nevertheless, we identified sev-
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eral putative transcription factor–binding sites containing the

SNPs included in promoter haplotypes in high LD with

rs2234358 (see Methods). Further experiments are required to

determine the causative genetic variants and the biological

mechanisms at stake.

DISCUSSION

Because the major signal identified in previous AIDS GWASs

was associated with control of viral replication, we reanalyzed

the genomewide data of the French GRIV LTNP cohort by

excluding elite controller patients (ie, patients with a viral load

of !100 copies/mL). The comparison of 186 LTNPs exhibiting

a viral load of 1100 copies/mL with 697 uninfected controls

highlighted a strong association for the CXCR6 rs2234358

( ). This new signal was replicated by a candidate�7P p 2.5 � 10

SNP approach in 3 additional independent European descent

cohorts (including 316, 156, and 556 subjects), and the com-

bined P value of the 4 cohorts reached the genomewide sig-

nificance threshold: . This chromosome 3�10P p 9.7 � 10combined

association is independent from the well-known neighboring

CCR2–CCR5 locus, is not linked with the control of viral load

(the GRIV LTNP groups carrying the various rs2234358 ge-

notypes exhibit a similar mean viral load) ( , data notP p .72

shown), and exhibits a high attributable risk of LTNP of 12%.

This study presents the first non-HLA–replicated association

obtained through a GWAS approach. The P value for rs2234358

is very strong in the GRIV cohort, and this signal was confirmed

in 3 independent cohorts but with weaker P values. The specific

design of the LTNP phenotype can explain this discrepancy.

Indeed, the extraction of LTNPs with a viral load 1100 copies/

mL from the ACS and MACS cohorts confirmed the strength

of this common SNP association with LTNP: ∼40% versus

∼50% in several uninfected control groups (see Figure 1A and

Figure A2 in the Appendix, the latter of which appears only in

the electronic version of the Journal). It emphasizes the critical

importance of cohort design and the particular power of ex-

treme phenotypes [5, 34–35], particularly in light of a recent

powerful GWAS involving 12500 patients, which solely iden-

tified chromosome 6–related signals [36].

The finding of a new chemokine receptor genetic variant

contributing to a differential progression to AIDS is not so

much of a surprise, because the chemokine system is a major

weapon of the early host defense system against infectious dis-

eases and comprises 1100 members. An exonic CXCR6 variant

present in African Americans (but absent in Europeans) was

previously associated with Pneumocystis carinii pneumonia–

mediated progression to AIDS [37]. Our CXCR6 genetic variant

is not exonic, and its biological effect should rather be a mod-

ulation of CXCR6 expression. CXCR6, known as a minor HIV-

1 coreceptor [38] and mediator of inflammation [39, 40], is

notably expressed in organs (thymus, gut, and bone marrow)

and in immune cells [41], which are important for HIV-1 in-

fection. It is involved in the trafficking of effector T cells me-

diating type 1 inflammation [39] and in the activation and

homeostasis of natural killer T cells [42], known to be an im-

portant bridge between innate and adaptive immune responses.

Interestingly, in simian immunodeficiency virus (SIV) infec-

tion, it has been proposed that interleukin-17–secreting natural

killer T cells could compensate for the Th17 defect in the gut,

because they are essential for controlling mucosal barrier in-

tegrity and microbial translocation [43, 44]. These hypotheses

are compatible with a major role of CXCR6 as an inflammation

mediator in AIDS [39, 40], but they deserve further functional/

biological research to enhance our understanding of the mo-

lecular pathways to HIV-1 LTNP.

At a time when HIV-1 entry inhibitors such as CCR5 and

CXCR4 antagonists are being developed, the identification of

a molecular mechanism of AIDS pathogenesis involving a new

chemokine receptor is of particular interest and opens new

insights for therapeutic drug targets and prediction of HIV-1

progression.
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40. Landrø L, Damås JK, Halvorsen B, et al. CXCL16 in HIV infection—
a link between inflammation and viral replication. Eur J Clin Invest
2009; 39:1017–24.

41. Koprak S, Matheravidathu S, Springer M, Gould S, Dumont FJ. Down-
regulation of cell surface CXCR6 expression during T cell activation
is predominantly mediated by calcineurin. Cell Immunol 2003; 223:
1–12.

42. Germanov E, Veinotte L, Cullen R, Chamberlain E, Butcher EC, John-
ston B. Critical role for the chemokine receptor CXCR6 in homeosta-

sis and activation of CD1d-restricted NKT cells. J Immunol 2008; 181:
81–91.

43. Campillo-Gimenez L, Cumont MC, Fay M, et al. AIDS progression is
associated with the emergence of IL-17-producing cells early after sim-
ian immunodeficiency virus infection. J Immunol 2010; 184:984–92.

44. Raffatellu M, Santos RL, Verhoeven DE, et al. Simian immunodefi-
ciency virus-induced mucosal interleukin-17 deficiency promotes Sal-
monella dissemination from the gut. Nat Med 2008; 14:421–8.


