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Abstract
Background: We have developed a new computational algorithm, Shape-IT, to infer haplotypes
under the genetic model of coalescence with recombination developed by Stephens et al in Phase
v2.1. It runs much faster than Phase v2.1 while exhibiting the same accuracy. The major algorithmic
improvements rely on the use of binary trees to represent the sets of candidate haplotypes for each
individual. These binary tree representations: (1) speed up the computations of posterior
probabilities of the haplotypes by avoiding the redundant operations made in Phase v2.1, and (2)
overcome the exponential aspect of the haplotypes inference problem by the smart exploration of
the most plausible pathways (ie. haplotypes) in the binary trees.

Results: Our results show that Shape-IT is several orders of magnitude faster than Phase v2.1
while being as accurate. For instance, Shape-IT runs 50 times faster than Phase v2.1 to compute the
haplotypes of 200 subjects on 6,000 segments of 50 SNPs extracted from a standard Illumina 300
K chip (13 days instead of 630 days). We also compared Shape-IT with other widely used software,
Gerbil, PL-EM, Fastphase, 2SNP, and Ishape in various tests: Shape-IT and Phase v2.1 were the most
accurate in all cases, followed by Ishape and Fastphase. As a matter of speed, Shape-IT was faster
than Ishape and Fastphase for datasets smaller than 100 SNPs, but Fastphase became faster -but
still less accurate- to infer haplotypes on larger SNP datasets.

Conclusion: Shape-IT deserves to be extensively used for regular haplotype inference but also in
the context of the new high-throughput genotyping chips since it permits to fit the genetic model
of Phase v2.1 on large datasets. This new algorithm based on tree representations could be used
in other HMM-based haplotype inference software and may apply more largely to other fields using
HMM.

Background
The recent advent of genotyping chips, which can analyze
up to 500,000 single nucleotide polymorphisms (SNP)
per individual, offers a powerful tool for large scale asso-
ciation studies in human diseases. The most common
approach to find genes possibly implicated in a disease
relies on the comparison, in patients and controls, of the
distributions of SNP markers. An approach to increase the

power of such studies is to focus on more complex mark-
ers which capture implicitly the linkage disequilibrium
(LD) between SNPs: the combination of SNP alleles on
the same chromosome called haplotypes. Haplotypes are
of great interest to study complex diseases since they are
generally derived from chromosomal fragments which are
transmitted from one generation to the next or which may
have a biological meaning such as the promoter or the
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exons of a gene [1]. Beyond the biomedical applications,
the comparison of haplotype distributions between pop-
ulations also provides new insights in the diversity, the
history and the migrations of human populations. For
instance, several studies [2-6] have recently highlighted
that genetic diversity of the human genome is organized
in regions called haplotype blocks in which SNPs exhibit
a high degree of LD and few common haplotypes. These
haplotype blocks are delimited by recombination
hotspots and chromosomes can thus be viewed as mosa-
ics of common haplotypes. The recently developed Hap-
Map project, dedicated to establish a dense map of SNPs
and LD in various human populations [7-9], has empha-
sized the interest of haplotypes to study human diversity.

Regular genotyping (based on PCR/sequencing or on
chips) provides the genotype for each SNP but does not
allow the determination of the haplotypes (i.e. the combi-
nation of SNP alleles on each chromosome), and current
experimental solutions to this problem are still expensive
and time-consuming [10,11]. Clark was first to introduce
a computational alternative [12]: the determination of
haplotypes via a parsimony criterion which leads to a
minimal set of haplotypes sufficient to explain the entire
population. Since then, efficient statistical algorithms
have been developed under the random mating assump-
tion where the observed genotypes are formed by sam-
pling independently two unknown haplotypes. This
assumption, coupled with a probabilistic model for the
haplotypes, permits to define the likelihood of the
observed genotypes as a function of the model parame-
ters. Thus, in order to infer haplotypes, the most likely
parameter values are estimated via an Expectation Maxi-
mization algorithm (EM) or a Gibbs sampler algorithm
(GS) on the observed genotypes.

The first EM-based model estimated the most likely hap-
lotypes frequencies for observed genotypes without mak-
ing any assumption on the mutation and recombination
history of haplotypes [13]. Many software were built on
this simple model and the best-known is certainly PLEM
[14]. Later on, two new models were developed based on
the idea that the haplotypes were arising through muta-
tion and recombination events from few founder haplo-
types. In Gerbil [15], haplotype blocks are strictly defined
by dynamic programming and in each block, the haplo-
types are derived through mutations from founder haplo-
types. On the other hand, in Fastphase [16], in HIT [17],
and in HINT [18], both mutation and recombination
events on founder haplotypes are simultaneously mod-
eled through a hidden Markov model (HMM). All these
methods estimate founder haplotypes from observed gen-
otypes via EM algorithms.

For the GS-based algorithms, the general case relies on
sampling haplotypes for a genotype in function of all the
haplotypes currently assigned to the other genotypes. The
model of Haplotyper [19] simply favors haplotypes which
have been already assigned to many genotypes. In Phase
v1.0 [20], the idea was to favor the sampling of haplo-
types which likely coalesce with the already assigned ones.
At last, in Phase v2.1 [21,22], the sampled haplotypes are
mosaics of the previously sampled ones modeled in a
HMM.

Recently, an alternative approach to the statistical algo-
rithms was proposed in 2snp [23] which computes LD
measures for all pairs of SNPs and then resolves genotypes
by finding the maximum spanning trees.

Several studies have suggested that the HMM-based meth-
ods were the most accurate to infer the haplotypes
[17,18,24], certainly because of the flexible definition of
the haplotype blocks which depends generally on the
physical distance between SNPs [16]. Among the HMM-
based methods, Phase v2.1 is often considered as the most
accurate developed so far [24-30] which explains why it is
widely used in genetic association studies [31-33] and
why it was used to phase the genotype data of the Hap-
Map project [8]. The strength of Phase v2.1 probably
comes from two particularities. First, the HMM is built
during the GS iterations with a number of haplotypes pro-
portional to the number of genotypes in opposition to
other HMM-based methods which define a fixed number
of founder haplotypes. Second, the haplotypes are
inferred by summing over all the possible hidden state
sequences of the HMM (Forward algorithm) whereas
many other HMM-based methods infer haplotypes by
sampling only the most probable hidden sequence in the
HMM (Viterbi algorithm).

However, the required running time increases dramati-
cally with the number of SNPs since the search space
grows exponentially. This prevents the easy use of Phase
v2.1 in the current high-throughput chips. This fact has
previously motivated us to develop Ishape [27] which
matches Phase v2.1 accuracy while maintaining feasible
running times. For that, we have used a two-step strategy:
1. we defined a limited space of possible haplotypes with
a rapid pre-processing algorithm based on bootstrapped
EM haplotypes estimations 2. on this limited set of haplo-
types, we then used an accurate Phase-like algorithm. The
rapidity of the first step is made possible thanks to an iter-
ative implementation of the EM algorithm which avoids
any exponential growth of the space of possible haplo-
types and includes the SNPs one after the other during the
computations. In practice, Ishape runs up to 15 times
faster than Phase 2.1 (for up to 100 SNPs) with a similar
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accuracy in populations with high LD, such as Caucasian
genomes.

In this work, we present major improvements which
greatly reduce the computational time of Phase v2.1.
These improvements have been implemented in the soft-
ware package Shape-IT and compared to the widely used
competitor software.

Algorithm
Notations (Figure 1)
Let's assume we have a sample of n genotypes G = {G1,...,
Gn} describing the allelic content of n diploid individuals
over s SNPs. A genotype is split into a haplotype pair by
setting the phases between the z heterozygous SNPs (z ≤
s). The number of distinct haplotype pairs consistent with
a genotype is then 2(z-1). Let S = {S1,..., Sn} denotes the
total haplotype space where Si is the space of possible hap-
lotype pairs associated with the ith genotype. Moreover,
let's assume we have the recombination parameters ρ =
{ρ1,..., ρs-1} in the s-1 intervals between the s SNPs of the
sample as described by Stephens et al [22].

Gibbs sampler algorithm

The GS algorithm considers the haplotype reconstructions
of n individuals as a set of n random variables H = {H1,...,

Hn} with sampling spaces in S and it estimates the condi-

tional joint distribution of H given G and some recombi-

nation parameters ρ: Pr(H | G, ρ). In simple words, it
computes a conditional probability for each haplotype
pair of S in light of the observed genotypes G and the
recombination pattern between the SNPs. Given these
probabilities, the haplotype frequencies and the most
likely haplotype pair for each genotype are straightfor-

ward to obtain. In practice, Pr(H | G, ρ) is estimated by
sampling from the stationary distribution of a Gibbs sam-
pler (GS) H(0),..., H(t),... where a state H(t) is a particular
realization of the random variables of H: n haplotype
pairs from S which resolves the n genotypes of G. The GS
starts with a random haplotype realization H(0), and goes
from H(t) to H(t+1) by updating the haplotype pair of an
individual i in light of the 2n-2 other haplotypes found in

Schematic representation of a sample of n genotypesFigure 1
Schematic representation of a sample of n genotypes. In this example, the space of possible haplotypes Si for individual 
i contains 4 haplotype pairs with 8 distinct haplotypes. The possible phases between heterozygous markers are shown in bold.
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H(t), that we call . This "haplotypes update" step is

done by sampling a new haplotype pair from the condi-

tional distribution Pr(Hi | , ρ) proposed by Fearn-

head and Donnelly [34] and Li and Stephens [35]. This
conditional distribution, called FDLS distribution in the
following, is computed thanks to a hidden Markov model
for haplotypes described in the next section. The impor-

tant fact here is that computation of Pr(Hi | , ρ) con-

stitutes the most time-consuming part of the GS since it
has to be done on a space of possible haplotype pairs
which grows exponentially with the number of hetero-
zygous SNPs.

An iteration of the GS algorithm corresponds to update
successively the haplotypes of the n individuals of G given
a randomly initialized order of treatment. Between itera-
tions, according to the Metropolis Hasting acceptance
rates described by Stephens et al [22], we accept or reject

(1) new values for the recombination parameters ρ =

{ρ1,..., ρs-1} in the s-1 intervals between SNPs and (2) new

treatment order of genotypes in the GS. To finally obtain

Pr(H | G, ρ), we discard the first iterations of the GS as
burn-in iterations (typically 100) and for the n genotypes

Gi, we average the distribution Pr(Hi | , ρ) on several

main iterations (typically 100).

Computation of a haplotype pair probability in a HMM 
(Figure 2)
First of all, we assume that genotypes are produced by
sampling independently two haplotypes according to
their respective probabilities, which yields:

where δh,h' = 0 if h ≠ h' and δh,h' = 1 if h = h'. The conditional
probability π of haplotype h reflects how likely h corre-
sponds to an "imperfect mosaic" of the other haplotypes
{h1, ..., h2n-2} [22]. The underlying idea is that haplotype
h has been probably created through the generations as a
recombined sequence of haplotypes from the pool {h1, ...,
h2n-2}, possibly altered by some mutations. One models
this by computing the probability of observing the
sequence h = {o1, ..., os} in a hidden Markov model λ
designed to represent all possible mosaics of {h1, ..., h2n-

2}: π(h|h1, ..., h2n-2, ρ) = Pr(o1, ..., os|λ). Such HMM λ can
be viewed as a trellis of s × (2n - 2) hidden states qj (k) with
1 ≤ j ≤ s and 1 ≤ k ≤ 2n-2. A hidden state qj(k) of λ corre-
sponds to the allele of haplotype hk at SNP j and it is

linked to all the hidden states qj+1(l) (1 ≤ l ≤ 2n-2) at SNP
j+1 in order to model all the possible recombination
jumps of haplotypes between SNPs j and j+1 (Figure 2).
Then, a sequence of s hidden states in λ through the s
SNPs corresponds to a particular mosaic of {h1, ..., h2n-2}.
The probability of observing h = {o1, ..., os} in λ is com-
puted thanks to transition probabilities between hidden
states which mimic recombination and thanks to emis-
sion probabilities from hidden alleles to observed alleles
which mimic mutation. Similar hidden Markov models
have been proposed, but they generally rely on a limited
number of founder haplotypes where the most likely tran-
sition and emission probabilities are estimated from
observed genotype data via an EM algorithm [17,18].
Here, the emission and transition probabilities are
defined with prior distributions depending respectively
on a constant mutation parameter and on the variable
recombination parameters ρ . The objective of this section
is not to fully describe the probabilistic model of transi-
tions and emissions since this has already been done by
Stephens and Scheet [22]. Instead, we focus on how the
haplotype probability is computed in such a HMM λ from
transition and emission probabilities. We thus assume
that the following quantities are known as set up by
Stephens and Scheet:

• The transition probability aj (l,k) from the state qj(l) of
haplotype hl for SNP j to the state qj+1(k) of haplotype hk
for SNP j+1. If l ≠ k then aj (l,k) is the probability for hl to
be recombined with hk between SNP j and SNP j+1 (large
dashed arrows in Figure 2). And conversely, if l = k then aj
(l,l) is the probability for hl to be not recombined between
the two SNPs (plain arrows in Figure 2).

• The emission probability bj(k) of the hidden allele of
qj(k) in the observed allele oj of h (small dashed arrows in
Figure 2). If the hidden allele is different from the
observed one, then bj(k) corresponds to the probability
that the hidden allele qj(k) has been altered in oj by a
mutation event. Else, bj(k) corresponds to the probability
that no mutation has occurred.

In the HMM λ, the probability of a hidden states'
sequence is given by the product of the corresponding
transition probabilities. And the probability to observe h
= {o1, ..., os} given a particular hidden states' sequence is
obtained by the product of the probabilities for the hid-
den alleles to be emitted in the observed ones. Finally, to
compute the probability Pr(h|λ), one must sum up the
probabilities of observing h over all (2n - 2)s possible
sequences of s hidden states. An alternative to this expen-
sive computational approach is to define a forward prob-
ability αj(k) as the probability for the incomplete
observed sequence {o1, ..., oj} to be emitted by all the pos-
sible hidden sequences that end at state qj(k). Then, the
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partial posterior probability πj until SNP j of h can be writ-
ten as follows:

And the total probability of h over the s SNPs becomes:

π(h|h1, ..., h2n-2, ρ) = πs(h|h1, ..., h2n-2, ρ) (2)

The computations of αj(k) for k = 1,..., 2n-2 and j = 1,..., s
are efficiently done by a recursive algorithm for HMM
called forward algorithm [36]. It starts from initial values:

α1(k) = b1(k)/(2n - 2) (3)

And recursively computes the αj+1 values from the αj val-
ues as follows:

π ρ αj n j

k

n

h h h k( | ,..., , ) ( )1 2 2

1

2 2

−
=

−
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α αj j j j
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Representation of the execution trellis of the hidden Markov model used to compute the probability of a haplotypeFigure 2
Representation of the execution trellis of the hidden Markov model used to compute the probability of a hap-
lotype. The haplotypes h1,..., h2n-2 denote the previously sampled haplotypes which are used to compute the probability of the 
observed haplotype h. The sets {o1,..., os} and {q1(k), ..., qs(k)} correspond respectively to the observed state sequence of haplo-
type h and to the hidden state sequence of haplotype hk. The transition probability aj(k,l) corresponds to the probability of 
jumping from hidden state qj(k) of haplotype hk to hidden state qj+1(l) of haplotype hl, and the emission probability bj(k) corre-
sponds to the probability of observing oj given the hidden state qj(k). To compute the probability of observing the sequence h = 
{o1, ..., os} in this HMM, one must sum up the probabilities of observing h over all (2n - 2)s possible sequences of s hidden states 
which is done efficiently by the forward algorithm.
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Computing all the α values for a haplotype requires now
running time in O(sn2) instead of O(ns).

Computation of the FDLS distribution from a haplotype 
list by Phase v2.1 (Figure 3A)

The Phase v2.1 algorithm considers the haplotype space Si

as a list of  haplotypes compatibles with the genotype
Gi where zi is the number of heterozygous SNPs. And it

computes the FDLS distribution over this list with equa-

tions (3) and (1) on the HMM λ. This approach is compu-
tationally intensive for two reasons. First, it performs

many times the same computations of α values with the
forward algorithm since the haplotypes of Si are derived

from the same genotype and share thus identical allelic
segments. For instance, as shown in Figure 3A, several
haplotypes of Si differ only in the last SNPs while the com-

putation of forward values α starts each time from the first
SNP. Second, the list of haplotypes grows exponentially
with the number of heterozygous SNPs which prevents
any application with a high number of SNPs. To partially
overcome this problem, a "divide for conquer" solution
called "partition-ligation" (PL) was first proposed by Niu
et al [14,19,21]. It has been included in the Phase v2.1
algorithm as follows: it first divides the genotypes into
segments of limited size (typically 5–8 SNPs), determines
the most probable haplotypes on each segment with com-
plete runs of the GS, and then progressively ligates haplo-
types of the adjacent segments in several runs until
completion. When two adjacent segments are ligated, the
space S of candidate haplotype pairs is initialized from all
combinations of the most probable haplotypes previously
found in each segment. However, the PL procedure
remains computationally expensive because it implies 2s/
p - 1 (where p is the size of the partitions) complete runs
of the algorithm, each time on a quadratic number of
combinations of adjacent plausible haplotypes.

Computation of the FDLS distribution from a complete 
binary tree by Shape-IT (Figure 3B)
To compute the FDLS distribution while avoiding any
redundant calculations of α values, our algorithm uses a
complete binary tree (called haplotype tree in the follow-
ing) instead of an exhaustive list to represent the haplo-
type pairs space Si. It can be viewed as an extension of the
forward algorithm which computes the probabilities of
observing in the HMM λ several pairs of sequences classi-
fied into a binary tree rather than observing a unique
sequence.

Such a haplotype tree is easily derived from a partition of
genotype Gi into m unambiguous segments

 : each one starts from a heter-

ozygous SNP, includes all the following homozygous
SNPs, and ends before the next heterozygous SNP. A node
of the haplotype tree corresponds to a genotype segment

, and the two children nodes, to the two possible

switch orientations with the following segment (gj+1,

) and ( , gj+1). Then, a single path from the root

to a leaf corresponds to a single possible haplotype pair of
Si (Figure 3B).

To compute efficiently the FDLS distribution, Shape-IT
explores the haplotype tree with a single recursive algo-
rithm which combines the reconstruction of the haplo-
types and the calculation of associated α forward values.
In practice, it iterates the nodes by level-order (i.e. seg-
ment-order) to avoid any previous construction in mem-
ory of the haplotype tree. When visiting a node with the
associated genotype segment (g, g'), the algorithm makes
recursively a quadruplet q = {h, α, h', α'} where h and h'
are the two haplotypes with respective forward values α
and α' corresponding to the current explored path in the
haplotype tree. Once all the nodes visited, the haplotype
pairs of Si and the FDLS distribution are given respectively
by the haplotypes and the forward values of the quadru-
plets associated to the leaf nodes. This approach is imple-
mented in the algorithm 1 (Figure 4).

This algorithm avoids all the unnecessary forward value
computations made when using the representation by
haplotype lists. However, the haplotype tree to be
explored still grows exponentially with an increasing
number of heterozygous SNPs. It results in a list L whose
size is multiplied by two at each level explored (Figure 4).
As with the classical haplotype list approach, this algo-
rithm can be simply implemented in a PL strategy: first, a
haplotype tree is derived for each segment of genotype,
and then the most probable adjacent subtrees are deter-
mined and combined until completion. We have used an
alternative strategy described in the next paragraph.

Computation of the FDLS distribution from an incomplete 
binary tree by Shape-IT (Figure 3C)
In practice, the number of haplotype pairs sufficiently
probable to be sampled in the FDLS distribution is
roughly linear with the number of SNPs instead of being
exponential. As an alternative to the classical and expen-
sive PL strategy, we have thus modified our recursive algo-
rithm to explore only the paths in the haplotype tree
which correspond to the most plausible haplotype pairs.
In other words, our algorithm aims at identifying an

2 zi

G g g g gi m m= ′ ′{( , ),...,( , )}1 1

( , )g gj j′

′ +g j 1 ′ +g j 1
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Different representations of the space of possible haplotypes pairs SiFigure 3
Different representations of the space of possible haplotypes pairs Si. The left panel (A) shows the list representation 
commonly used by haplotype software such as Phase v2.1. The lower right panel (C) shows the representation used by Shape-
IT. White and black circles indicate the phases between the heterozygous SNPs. On this example we use the same genotype Gi 
described in Figure 1. For iterations as performed by Phase v2.1 (A), the list requires the exploration of 20 nodes (4 haplotype 
pairs × 5 SNPs). With the complete tree representation (B) 10 nodes need to be explored, and with the incomplete tree rep-
resentation as performed by Shape-IT (C), only 7 nodes need to be explored. The difference observed between (B) and (C) 
results from the pruning strategy which avoids the exploration of the nodes with probability ≤ 0.01.
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incomplete binary tree of limited size which captures at
best the informative part of FDLS distribution (Figure
3C). For that, recursions are made only on nodes exhibit-
ing a probability, as given by expressions (2) and (1),
greater than a threshold f initially defined. In practice, it
results in maintaining a list L of quadruplets of limited
size for each level of the tree explored, which no longer
grows exponentially with the number of heterozygous
SNPs. The corresponding modifications made in algo-
rithm 1 are implemented in algorithm 2 (Figure 5). Obvi-
ously the value of the threshold f affects the number of
quadruplets kept at each level of the haplotype tree and
thus, the number of haplotype pairs on which the FDLS
distribution is computed. It is clear that the value of
threshold f influences the diversity of haplotypes to be
captured and so, the computational effort needed. How-
ever, the strength of our algorithm clearly lies in the
greatly reduced complexity with the number of SNPs of

the FDLS computation step. Moreover, compared to the
2s/p - 1 complete runs of the GS required by the PL strat-
egy, it treats all the SNPs in a single run.

Methods
We have implemented our algorithm in the software
package Shape-IT publicly available at http://
www.griv.org/shapeit/. We have extensively compared
Shape-IT with the widely used haplotype inference soft-
ware 2snp [23], Gerbil [15], Fastphase [16], PL-EM [14],
Ishape [27] and Phase v2.1 [21,22] on 3 kinds of datasets
described hereafter. All the software were run with default
parameters on a standard 2 GHz computer with 1 Go of
RAM.

In the comparisons, we have tried to work as close as pos-
sible to real conditions: on the one hand, we have used
tightly linked SNPs such as those used in a single gene fine

Algorithm 1 to compute the FDSL distribution on the complete haplotype treeFigure 4
Algorithm 1 to compute the FDSL distribution on the complete haplotype tree.

INPUT: a genotype Gi partitioned into m segments 1 1{( , ),..., ( , )}m mg g g g′ ′ . 

Let L and L’ denote two lists of quadruplets as defined above. 
Make a “root” quadruplet { , , , }R R R R Rq h hα α′ ′= : 

1. Set 1Rh g= . Initialize Rα  by expression (5) on the first marker of 1g . And compute Rα  by recursive application of 

expression (6) on the other markers of 1g . 

2. Set 1Rh g′ ′= . Initialize Rα′  by expression (5) on the first marker of 1g′ . And compute Rα′  by recursive application of 

expression (6) on the other markers of 1g′ . 

Put Rq  in L. 

For j from 2 to m 
 For each “parent” quadruplet { , , , }P P P P Pq h hα α′ ′= of L do 

Make two “children” quadruplets 1 1 1 1 1{ , , , }C C C C Cq h hα α′ ′=  and 2 2 2 2 2{ , , , }C C C C Cq h hα α′ ′= : 

1. Set 1C P jh h g= + . Initialize 1C Pα α= . And compute 1Cα  by recursive application of expression 

(6) on markers of jg . 

2. Set 1C P jh h g′ ′ ′= + . Initialize 1C Pα α′ ′= . And compute 1Cα′  by recursive application of expression 

(6) on markers of jg′ . 

3. Set 2C P jh h g′= + . Initialize 2C Pα α= . And compute 2Cα  by recursive application of expression 

(6) on markers of jg′ . 

4. Set 2C P jh h g′ ′= + . Initialize 2C Pα α′ ′= . And compute 2Cα′  by recursive application of expression 

(6) on markers of jg . 

  Put 1Cq  and 2Cq in L’. 

 Delete L. 
 L = L’. 
OUTPUT: 
For each “leaf” quadruplet { , , , }L L L L Lq h hα α′ ′= of L do 

 Put ( , )L Lh h′ in Si. 

 Compute ( )Pr( , | , )t
L L ih h H ρ−

′  from Lα and Lα′  by expression (3) and (1). 
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mapping and on the other hand, we have used TagSNPs
with a low level of LD which correspond to the worst con-
ditions to infer haplotypes. At last, we have also made esti-
mations of the running times required by the most
accurate software to infer the haplotypes of a 300 K Illu-
mina chips.

Single gene datasets
First, we have used genotypes for which the haplotypes
have been completely determined experimentally: the
GH1 [37] and ApoE [38] genes. The GH1 dataset contains
14 SNPs for 150 Caucasian individuals and the ApoE
dataset contains 9 SNPs for 90 individuals of mixed ethnic
origins. For each gene, we have additionally generated
100 replicates by randomly masking 5% of the alleles in
order to simulate real experimental conditions (missing
data). On these datasets, we have measured the IER (Indi-
vidual Error Rate) and the MER (Missing data Error Rate)
which corresponds respectively to the percentage of indi-
viduals incorrectly inferred and to the percentage of miss-
ing data incorrectly inferred. Although of limited size,
these two genes are very useful to compare precisely the
haplotype frequency estimations made by the algorithms
via the IF coefficient [25], since haplotype frequencies are

commonly used by the geneticists in genetic association
studies.

HapMap trio datasets
Second, we have worked on trios' genotypes (2 parents
and 1 child) derived from the HapMap project [7,8]. We
have collected five regions of 10 Mb on chromosomes 1,
2, 3, 4 and 5 in African (YRI) or European (CEU) popula-
tions. The 10 resulting chromosomal regions have been
preprocessed by the Haploview software [39] to remove
SNPs with Mendelian inconsistency or with insufficient
minor allele frequency (MAF). From these chromosomal
regions, we have generated several HapMap datasets
according to the choices of markers described in Table
1[24,27]. On all these trios' genotypes, the parent haplo-
types can be partially obtained (about ~80% of the phases
between adjacent heterozygous SNPs are determined),
and we have measured the running times of the various
algorithms and the SER (Switch Error Rate) of haplotypes
inferred by the various software. The SER corresponds to
the percentage of known phases between adjacent hetero-
zygous SNPs (obtained thanks to the trios affiliation)
incorrectly inferred [22,27], which is more adapted than
the IER on large numbers of SNPs because the IER does

Algorithm 2 to compute the FDSL distribution on the incomplete haplotype treeFigure 5
Algorithm 2 to compute the FDSL distribution on the incomplete haplotype tree.

INPUT: a genotype Gi partitioned into m segments 1 1{( , ),..., ( , )}m mg g g g′ ′  and a threshold f. 

Let L and L’ denote two lists of quadruplets. 
Make a “root” quadruplet Rq as in algorithm 1. 

Put Rq  in L. 

For j from 2 to m 
 For each “parent” quadruplet { , , , }P P P P Pq h hα α′ ′= of L do 

  Compute ( )Pr( , | , )t
P P ih h H ρ−

′ by expression (2) and (1). 

  If ( )Pr( , | , )t
P P ih h H ρ−

′  > f  then 

   Make 2 “children” quadruplets 1Cq  and 2Cq  from Pq  as in algorithm 1. 

   Put 1Cq  and 2Cq in L’. 

 Delete L. 
 L = L’. 
OUTPUT: 
For each “leaf” quadruplet { , , , }L L L L Lq h hα α′ ′= of L do 

 Put ( , )L Lh h′ in Si. 

 Compute ( )Pr( , | , )t
L L ih h H ρ−

′  from Lα and Lα′  by expression (3) and (1). 
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not differentiate between one or several heterozygous
SNPs incorrectly inferred.

To investigate on the impact of low LD in haplotype infer-
ence, we have also used a set of 15,000 adjacent Tag SNPs
picked up from the large arm of chromosome 12 and
found in the 300 K Illumina chips.

GRIV cohort datasets
Third, we have generated large SNP datasets from subjects
of the GRIV (Genomics of Resistance to Immunodefi-
ciency Virus) cohort genotyped with the 300 K Illumina
chip. The GRIV cohort comprehends about 400 Caucasian
subjects collected for genomic studies in AIDS [1,40-43].
These datasets were used to estimate the running times
required by the most accurate software to infer the haplo-
types of a 300 K Illumina chips. For that, we have gener-

Table 1: Hapmap trio datasets description

Datasets Chromosom
e

#datasets #SNP #indiv Details

CEU Size 1 to 5 250 10 to 160 60 50 datasets of 10, 20, 40, 80 and 160 adjacent SNPs with MAF above 
5%

CEU Density 1 to 5 300 40 60 50 datasets with spanned distance between SNP above 0, 0.5, 1, 2, 4 
and 8 kb (MAF 5%)

CEU MAF 1 to 5 150 40 60 50 datasets with MAF above 1%, 5% and 10%
YRI Size 1 to 5 250 10 to 160 60 50 datasets of 10, 20, 40, 80 and 160 adjacent SNPs with MAF above 

5%
YRI Density 1 to 5 300 40 60 50 datasets with spanned distance between SNP above 0, 0.5, 1, 2, 4 

and 8 kb (MAF 5%)
YRI MAF 1 to 5 150 40 60 50 datasets with MAF above 1%, 5% and 10%
CEU illumina 50 12 300 50 60 15,000 illumina SNPs grouped by dataset of 50 SNPs
CEU illumina 100 12 150 100 60 15,000 illumina SNPs grouped by dataset of 100 SNPs
CEU illumina 200 12 75 200 60 15,000 illumina SNPs grouped by dataset of 200 SNPs
GRIV 1 90 50 to 200 100 to 300 3,500 illumina SNPs grouped by dataset of 50, 100 and 200 SNPs

Description of the benchmarks derived from the HapMap trios datasets that we used to compare accuracy and runtimes of the various algorithms 
in Table 4. For each parameter (size, density, and MAF) 10 samples were chosen in each of the chromosomes 1 to 5, i.e. a total of 50 tests per 
parameter.

Accuracy of the different values tested for the threshold f in Shape-IT (grey boxes) compared to Phase v2.1 (black line)Figure 6
Accuracy of the different values tested for the threshold f in Shape-IT (grey boxes) compared to Phase v2.1 
(black line). This comparison was done on 300 datasets of 50 Tag SNPs called CEU Illumina 50.
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ated 10 datasets from the GRIV cohort data for various
numbers of markers (50, 100 and 200) and for various
numbers of individuals (100, 200 and 300). Then the
average running time over the 10 datasets of each combi-
nation of SNP number and genotype number was used to
extrapolate the running time required to infer the haplo-
types over the 300,000 SNPs.

Results
Empirical determination of the threshold f (Figure 6)
As discussed in the section Algorithm, Shape-IT relies on
a threshold f to discard some branches of the haplotype
binary trees. So, we have tested several values for f: the
accuracy is clearly stable for values below 0.01. Since the
running time was optimal for f = 0.01, we have used this
value as default in all the following comparisons.

Comparisons on the single gene datasets (Table 2 and 3)
On these datasets, Shape-IT, Ishape and Phase v2.1 give
clearly the better haplotype reconstructions and frequency
estimations compared to the other software. One can
notice that Ishape seems to be slightly more accurate than
Shape-IT and Phase v2.1. For the completion of missing
data, all the methods (except 2snp) are closely related.

Comparisons on the HapMap trio datasets (Table 1 and 4)
As a matter of accuracy, Shape-IT and Phase v2.1 outper-
form all the other methods. Ishape comes second but
plunges when dealing with larger number of Tag SNPs.
Fastphase comes third but it seems to work relatively bet-
ter when the datasets get bigger. 2snp, Gerbil, and PLEM
do not match the accuracy of the other software. All the
software get higher error rates when the number of Tag
SNPs increases which is probably the consequence of the
increasing complexity of the LD pattern when dealing
with limited numbers of individuals.

As a matter of speed, the fastest software is clearly 2snp.
For relatively small numbers of SNPs, PLEM and Gerbil
are also very fast, but become very slow when the number
of SNPs increases or when the LD pattern gets more com-
plex to capture. Among the 4 most accurate software
(Phase v2.1, Fastphase, Ishape, and Shape-IT), Phase v2.1
is the slowest, Shape-IT is the fastest for small and
medium-sized SNP samples (< 100 SNPs), and Fastphase
becomes faster for larger numbers of SNPs (see additional
file 1).

Running time on the GRIV cohort datasets (Table 5)
On these datasets, Shape-IT runs between 15 to 150 times
faster that Phase v2.1, depending on the segmentation
strategy used (50, 100 or 200 SNPs) and the number of
genotypes in the population (100, 200 or 300). Fastphase
remains the fastest software but closely followed by
Shape-IT. The increase of SNP and genotype numbers
strongly cripples Phase v2.1 and Ishape, while it is better
handled by Shape-IT and Fastphase.

Discussion and conclusion
We have developed a new algorithm derived from the
Phase v2.1 Gibbs sampler scheme. We have improved the
most time-consuming steps by using binary tree represen-
tations and by avoiding the PL procedure thanks to an
incomplete exploration of binary trees. The resulting soft-
ware, Shape-IT, is extremely accurate like Phase v2.1, but
may run up to 150 times faster as shown in our tests.
These results have an impact for the computation of hap-
lotypes in genome scans as shown in Table 5. As an exam-
ple, for the 300,000 SNPs of an Illumina genotyping chip,
inferring haplotypes on 6,000 segments of 50 SNPs with a
regular 2 GHz computer would take for Shape-IT about 10
days for 100 individuals, 13 days for 200 individuals, 28
days for 300 individuals while it would take for Phase
v2.1 151 days for 100 individuals (15 times more), 443

Table 2: Results obtained by various haplotyping software on the 
experimentally determined ApoE dataset.

ApoE 0%MD 5%MD

IER IF IER MER IF

2snp 20.0 83.8 22.7 7.3 83.9
Fastphase 11.3 89.4 17.4 6.1 87.5
Gerbil 20.0 81.3 20.3 6.6 84.6
Ishape 5.6 94.1 10.2 5.9 92.5
Shape-IT 5.6 94.1 10.5 6.2 92.4
Phase v2.1 5.8 94.0 10.2 5.8 92.4
PLEM 12.5 89.8 16.0 6.5 88.7

For the various software tested, we measured the percentage of 
individuals incorrectly reconstructed (IER), the percentage of missing 
data incorrectly inferred (MER), and the distance between real and 
inferred haplotype frequencies (IF) on the ApoE with complete 
genotypes and 5% random missing genotypes.

Table 3: Results obtained by various haplotyping software on the 
experimentally determined GH1 dataset.

GH1 0%MD 5%MD

IER IF IER MER IF

2snp 15.7 88.2 22.0 7.5 88.3
Fastphase 10.5 92.5 17.3 4.5 90.7
Gerbil 11.8 92.8 16.7 4.2 91.6
Ishape 10.1 93.8 15.0 4.5 92.6
Shape-IT 10.3 93.6 14.9 4.5 92.5
Phase v2.1 10.3 93.7 15.2 4.5 92.5
PLEM 12.4 90.3 17.2 4.8 89.4

For the various software tested, we measured the percentage of 
individuals incorrectly reconstructed (IER), the percentage of missing 
data incorrectly inferred (MER), and the distance between real and 
inferred haplotype frequencies (IF) on the GH1 with complete 
genotypes and 5% random missing genotypes.
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days for 200 individuals (34 times more) and 1372 days
for 300 individuals (49 times more). The gain of time
using Shape-IT is thus considerable and practically very
useful to exploit datasets derived from large-scale geno-
typing chips.

An important aspect of this work is that other haplotype
inference software relying on HMM may gain to imple-
ment this new binary tree representation of the observed
genotypes. Moreover, we have not found in the literature
the description of this algorithm whereas it might be use-
ful for other fields using HMM.

Availability and requirements
Project name: Shape-IT v1.0

Project home page: http://www.griv.org/shapeit/

Operating systems: MacOS, Windows, Linux32bits and
Linux64bits.

Programming language: C++

Do not forget to read the manual file,
manual_ShapeITv1.0.pdf, to get the detailed information.

Table 4: Hapmap trio datasets results

Datasets Shape-IT Phase v2.1 Fastphase Ishape 2snp Gerbil PLEM

SER Time SER Time SER Time SER Time SER Time SER Time SER Time

CEU Size 1.1 1.1 1.5 1.1 2.2 2.3 2.0
53 832 113 93 < 1 50 10

YRI Size 1.7 1.7 2.3 1.8 4.5 3.9 4.2
64 1,209 125 138 < 1 131 10

CEU Density 2.3 2.3 2.7 2.4 4.2 4.0 4.1
26 214 64 43 < 1 5 6

YRI Density 3.7 3.7 4.9 3.9 8.5 7.5 8.8
35 490 71 80 < 1 9 5

CEU MAF 1.1 1.1 1.2 1.2 2.0 2.1 1.7
19 104 71 22 < 1 2 4

YRI MAF 1.5 1.5 2.0 1.5 4.5 3.8 3.2
26 173 80 38 < 1 4 4

CEU 50 illumina SNP 6.3 6.3 7.2 6.6 10.7 9.2 12.2
51 1,214 60 161 < 1 22 5

CEU 100 illumina SNP 6.7 6.8 7.7 9.2 11.3 9.7 N/A
143 11,678 144 461 < 1 254 N/A

CEU 200 illumina SNP 7.2 N/A 8.0 N/A 11.5 9.9 N/A
372 N/A 198 N/A < 1 2,038 N/A

N/A: software was unable to handle some of these datasets (errors or untracktable running times). Results of the various tested software on the 
HapMap trios datasets described in Table 1. For each software tested, the mean percentage of heterozygous markers incorrectly inferred (SER) is 
shown in the upper-left corner, and the mean running time in seconds is shown in the lower-right corner.

Table 5: Comparison of the estimated running times of various software on 300 K Illunima genotyping chips datasets.

#SNPs #genotypes Fastphase Ishape Shape-IT Phase v2.1

50 100 10 29 10 151
100 100 6 37 12 519
200 100 6 41 19 3,137
50 200 21 34 13 443
100 200 21 119 29 2,739
200 200 21 124 37 7,601
50 300 37 113 28 1,372
100 300 41 268 52 6,514
200 300 42 261 81 12,757

Estimations of the running times in days of the 4 most accurate software (Phase v2.1, Ishape, Fastphase and Shape-IT) to infer the haplotypes for 
100, 200, or 300 genotypes derived from Illumina 300 k chips partitioned into segments of either 50 SNPs, or 100 SNPs, or 200 SNPs. For each 
combination #SNPs #genotypes, the running time estimations were extrapolated from the measures performed on 10 datasets extracted from the 
GRIV cohort 300 K Illumina chip genomic data.
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The software remains confidential until publication of the
work. It will be freely available to academics, and a licence
will be needed for non-academics (patented for business
and commercial applications).
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