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Abstract

Genomic studies developed to understand HIV-1 infection and pathogenesis have often lead to conflicting results. This is linked to various
factors, including differences in cohort design and selection, the numbers of patients involved, the influence of population substructure, the
ethnic origins of the participants, and phenotypic definition. These difficulties in the interpretation of results are examined through published
studies on the role of polymorphisms in HLA and the chemokine receptors genes in AIDS. Our analysis suggests that the use of haplotypes will
strengthen the results obtained in a given cohort, and meta-analysis including multiple cohorts to gather large-enough numbers of patients
should also allow clarification of the genetic associations observed. A P-value of 0.001 appears to be a good compromise for significance on
candidate genes in a genetic study. Due to the generally limited size of available cohorts, results will have to be validated in other cohorts.

We developed a model to fit transversal case studies (extreme case-control studies) with longitudinal cohorts (all-stages patients) for
observations on two gene polymorphisms of CCR5 and NQO1. Interestingly, we observe a protective effect for the CCR5-D32 mutant allele
in 95% of the simulations based on that model when using a population of 600 subjects; however, when using populations of 250 subjects we
find a significant protection in only 59% of the simulations. Our model gives thus an explanation for the discrepancies observed in the various
genomic studies published in AIDS on CCR5-D32 and other gene polymorphisms: they result from statistical fluctuations due to a lack of
power. The sizes of most seroconverter cohorts presently available seem thus insufficient since they include less than a few hundred subjects.
This result underlines the power and usefulness of the transversal studies involving extreme patients and their complementarity to longitudinal
studies involving seroconverter cohorts. The transposition approach of extreme case-control data into longitudinal analysis should prove useful
not only in AIDS but also in other diseases induced by chronic exposure to a foreign agent or with chronic clinical manifestations.
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1. Introduction

Numerous studies have been performed to explain the role
of the host genetic background in determining the rate of
AIDS disease progression [1]. Such studies are of impor-
tance since they can lead to a better understanding of
virus/host interactions and the corollary development of new
tools to better fight the virus. There are two kinds of genetic
studies commonly used for HIV-1 and AIDS: longitudinal
cohort studies involving all-stage patients followed since

their seroconversion after study enrollment and transversal
studies comparing the extremes of disease progression (slow
progressors (SP), fast progressors (FP)) with controls. The
statistical associations found on longitudinal observations
are based on Kaplan–Meier “survival” curves while the sta-
tistical associations found in transversal studies are based on
Fisher’s exact tests or v2-like tests.

Initial studies have focused on the influence of human
leucocyte antigens (HLA) genes on AIDS disease progres-
sion [2], which were often inconsistent due to the large
number of HLA alleles, low allele frequencies, and the lim-
ited size of the cohorts analyzed [3]. The most important
studies involving HLA are recent and involved seroconverter
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patient cohorts of size 240 [4] and 470 [5]. Other genetic
polymorphisms involving the cytokines TNFa [6], IFNc [7],
IL4 [8], and IL10 [9] or the myelin basic protein (MBP) [10]
have shown interesting results, but the most successful ge-
netic studies to date have dealt with the chemokines receptors
[11]. In effect, while chemokines receptors were identified as
the coreceptors of HIV-1 in 1996 [12], a variant of CCR5,
CCR5-D32, was shown to have a dramatic protective effect
against disease progression [13–15]. Since then, numerous
studies performed on the polymorphism of chemokines and
their receptors have found specific variants affecting signifi-
cantly disease outcome: a polymorphism in the coreceptor
CCR2 [16], a polymorphism in the promoter of the corecep-
tor CCR5 [17,18], a polymorphism in the promoter of the
ligand of CXCR4, SDF1 [19] or in the regulatory regions of
RANTES [20,21].

The protective effect of CCR5-D32 was not observed in
all longitudinal studies [22], and conflicting results have been
also observed for other chemokine receptors polymorphisms
among various longitudinal cohorts, and also between longi-
tudinal and transversal studies. In the present paper, we
review the conflicting results stemming from various studies
and discuss the reasons for the observed discrepancies. Fi-
nally, we try to set-up a statistical model allowing to trans-
pose data from extreme case-control studies to predict the
results one should obtain on a longitudinal cohort.

At a time, when pharmacogenomic studies are ever-
developing, this work has importance not only for AIDS but
for all diseases involving extreme patterns of progression:
diseases induced by chronic exposure to an external agent,
such as tobacco in lung cancer; or chronic clinical manifes-
tation as in autoimmune diseases or hepatitis C; and where
the genetic background of the individual is likely to influence
the final outcome to therapies.

2. Material and methods

2.1. Cohorts

The review of the results is based on studies published in
peer-reviewed journals. The size of the longitudinal AIDS
cohorts range from 100 to 700 patients with known serocon-
version dates. We voluntarily avoid seroprevalent (partici-
pants already HIV-1 infected at study enrollment) cohorts
since they can induce biases in the results [23]. Transversal
studies have dealt mainly with the genetics of resistance to
immunodeficiency virus (GRIV) cohort developed by our
group [24], which includes 250 SP and 90 rapid progressors.
The GRIV cohort SP subjects correspond to 1% of the active
files in hospitals which mean that the GRIV cohort corre-
sponds to the extremes of 25&puncsp;000 patients at all
stages.

2.2. Genotyping

The genotyping of single nucleotide polymorphisms
(SNPs) and in the case of CCR5-D32, a 32 bp

insertion/deletion was usually performed using
PCR/sequencing, PCR/RFLP or other PCR-based tech-
niques. All GRIV participants were typed using PCR-RFLP.

2.3. Statistical methods

The statistical methods published were based on Kaplan–
Meier survival analysis curves, and the Cox model for longi-
tudinal cohorts or on v2 evaluations for case-control studies.

The development of the model for transposition from
transversal into longitudinal observations was based on sur-
vival data analysis, using non-parametric, semi-parametric,
or fully parametric models, leading respectively to Kaplan–
Meier estimators of the survival functions, to regression
parameters estimators for the alleles and to parametric esti-
mators of the survival functions. The model, based on trans-
versal observations (extreme patients and controls) was built
to fit with the known longitudinal data published on serocon-
verter cohorts: it used a Cox regression model with a Weibul
baseline hazard. Once, the model has been built, we ran-
domly generate cohorts verifying the known cohorts behav-
ior together with the original transversal data, and simula-
tions were performed using the survival model established.
The software used was Splus.

3. Results

3.1. Review of the literature and conflicting results

3.1.1. HLA polymorphisms
The most extensively analyzed genes have been those of

the HLA with studies published as early as 1990 [2] (Table 1
). HIV-1 infection is a chronic disease of the immune system
and the HLA locus is of prime interest since it regulates the
immune response to foreign antigens: the presentation of
peptidic epitopes by class I molecules (for CTLs) and by
class II molecules (for helper T-cells) may vary from one
individual to the other according to his HLA genotype. Initial
genetic studies included less than 100 subjects and involved
patients from all origins [1,2]. Only a few studies involving
HLA have used larger cohorts and they date from 1996. The
necessity of using longitudinal cohorts consisting of seroin-
cident patients and not seroprevalent patients avoids frailty
bias and has been emphasized previously [23]. We will limit
our analysis to the results published on seroconverter co-
horts. A first study on a seroconverter cohort appeared in
Kaslow et al. [4] and dealt with two cohorts representing a
total of 241 men including 139 subjects from the MACS
cohort. That study was further extended in Keet et al. [25]
with 134 seroconverters from the Amsterdam city cohort.
The work of Kaslow et al. [4] presented the B27, B57, B51,
A32, A25 HLA markers associated with slower progression,
while, B49 met the criteria for rapid progression (Table 1).
The addition of a third cohort of 134 seroconverters [25] led
to similar results, but differences were seen when TAP genes
were included (part of HLA locus), showing the great impor-
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tance of the number of subjects to reveal robust associations.
In 1999, Carrington et al. [5] dealt with 474 seroconverter
patients of whom 330 were Caucasians and 144 were Afri-
can–Americans. It identified in both populations clear effects
for HLA-B35 and homozygosity on rapid progression, and
also effects of A29, B27 and B41 among African–Americans
(Table 1). The results of Kaslow et al. [4] and Carrington et
al. [5] should overlap since both works rely in part on the 139
subjects from the MACS cohort: however, the results do not
match. This discrepancy can be explained by the use of

different statistical approaches and by the fact that the addi-
tion of 102 new subjects in the first case and of 191 new
subjects in the second case modified the outcome. Interest-
ingly, in Carrington et al. [5], the association of B27 was
favoring rapid progression among African–Americans, while
the other studies showed that this allele favors slow progres-
sion among Caucasians (Table 1). These data suggest again
that HLA studies are very sensitive to cohort size and origin
and it might need many more subjects than a few hundreds in
seroconverter cohorts to yield robust results. One should note

Table 1
Summary of the results from the largest seroconverter cohorts and extreme patients studies

References Cohort size Gene allele Nb patients R p Comment
Kaslow et al. [4] 241 HLA-B27 17 0.32 NS 1

241 HLA-B57 21 0.47 NS 1
241 HLA-B51 25 0.52 NS 1
241 HLA-A32 21 0.62 NS 1
241 HLA-A25 11 0.61 NS 1
241 HLA-B49 9 1.8 NS 1

Keet et al. [25] 375 HLA-B27 30 0.4 0.003 2
375 HLA-B57 31 0.54 0.02 2
375 HLA-A24 50 1.57 0.004 2

Carrington et al. [5] 330 HLA-B35 NS 2.34 2×10–6 –
330 HLA-Cw4 NS 2.41 2×10–7 –
330 HLA-Cw12 NS 0.61 0.03 –
144 HLA-A29 NS 3.96 0.01 3
144 HLA-B27 NS 6.86 0.01 3
144 HLA-B41 NS 3.89 0.03 3

Magierowska et al. [26] 153 HLA-A3 35 0.51 0.02 4
153 HLA-B12 40 1.73 0.05 4
153 HLA-B17 30 0.48 0.03 4
153 HLA-B27 17 0.2 0.001 4

Hendel et al. [24] 276 HLA-A29 27 2.91 0.008 5
276 HLA-B14 37 0.16 0.001 5
276 HLA-B22 12 13.07 <10–4 5
276 HLA-B27 35 0.34 0.02 5
276 HLA-B35 44 1.62 0.04 5
276 HLA-B57 33 0.26 0.01 5
276 HLA-C8 32 0.19 0.004 5
276 HLA-C14 18 0.16 0.03 5
276 HLA-C16 26 2.26 0.04 5

Dean et al. [13] 309 CCR5-D32 70 0.61 0.005 –
Smith et al. [16] 648 CCR5-D32 NS 0.61 0.0003 –

648 CCR2-64I NS 0.64 0.001 –
Mummidi et al. [22] 174 CCR2-64I NS 0.33 0.02 6
Kostrikis et al. [28] 117 CCR2-64I NS NS 0.003 –
Meyer et al. [29] 506 CCR5-D32 94 0.55 <0.01 7
Magierowska et al. [26] 153 CCR5-D32 34 0.30 0.001 4
Hendel et al. [31] 237 CCR5-D32 53 0.05 <10–4 8
McDermott et al. [17] 417 CCR5P-1 83 1.74 0.017 9
Martin et al. [18] 694 CCR5P-1 NS 1.52 0.002 9
Faure et al. [34] 426 CX3CR1-M280 16 2.13 0.04 9

The data presented in this table are taken or computed from the publications mentioned. They are all given for the dominant model, except for CCR5P-1
[17,18] and CX3CR1-M280 [34] which correspond to a recessive model. All studies were based on longitudinal cohorts except for Magierowska et al. [26] and
Hendel et al. [24,31], involving extreme patients. “Nb patients” corresponds to the total number of patients carrying the allele in the model chosen. R = relative
hazard or relative risk, p = P-value for significance, NS = not shown.

Comments: 1, two values were given for RH and we took the mean; 2, results shown are the ones, which do not take into account the TAP genes; 3, the 144
subjects are African–Americans; 4, this corresponds to the RR of 70 SPs vs. 83 standard progressors; B17 = B57 + B58; 5, this corresponds to the RR of 200 SPs
vs. 76 FPs; 6, the 174 subjects are African–Americans; 7, the P-value is increased here because they compare the compound genotypes of CCR2, CCR5 and
SDF-1; 8, this RR corresponds to the RR of 182 NPs vs. 65 RPs; however, on the 2002 cohort RR = 0.2; 9, this is the recessive model.
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that, these two studies used different genotyping methods,
serological vs. molecular.

Extreme patients case-control studies were published by
Hendel et al. [24] and Magierowska et al. [26]. The work by
Magierowska et al. dealt with 70 Caucasian non-progressors
and 83 control infected subjects. It identified HLA A3, B17
(= B57 + B58), B27 as favoring non-progression and HLA
B12 favoring rapid progression. The work by Hendel et al.
dealt with 250 Caucasian non-progressors and 80 rapid pro-
gressors and identified HLA B14/C8, B27, B57, C14 as
favoring non progression and HLA A29/C16, B22, B35 as
favoring rapid progression as well as HLA DR11. These two
latter works were based on extreme case-control studies and
there are similarities for B27, B57 but there are also discrep-
ancies. It has been shown in a more recent work on CX3CR1
[27] that these two cohorts may lead to different results
probably since 70 subjects might not be a large-enough
number to yield reproducible results.

Overall, the comparison of the results found for all cohorts
show that B35, B27, B57,A29 have all been identified at least
twice in the studies. B14 and B22, which have shown the
largest odds ratios in the GRIV study, are very rare in the
population (allelic frequency less than 2.5%) and this might
explain why they are not seen in the other studies.

3.1.2. Chemokines receptors polymorphism
Chemokine receptors are the second set of genes, which

have been most intensively analyzed for genetic associations
because they have been identified as HIV-1 coreceptor to-
gether with CD4 [11,12] (Table 1). There is a dramatic effect
of a polymorphism in the major HIV-1 chemokine coreceptor
gene, CCR-5, a deletion of 32 bp leading to a truncated
receptor associated with resistance to HIV-1 infection
[13–15]. Other polymorphisms have been discovered and
associations were found in CCR5 promoter [17,18] and in
CCR2 [16].

The largest seroconverter cohorts described for associa-
tions of chemokine receptors in AIDS are the one used in
Smith et al. [16] which included 675 Caucasian seroconvert-
ers and 154 African–American seroconverters (mostly i.v.
drug users), the cohort described by Mummidi et al. [22]
composed of 470 seroconverters (with about 54% Cauca-
sians and 37% African–American), the cohort described by
Kostrikis et al. [28] with 117 seroconverters mostly Cauca-
sians, and the cohort described by Meyer et al. [29] with 506
Caucasian seroconverters. Mummidi et al. [22] could not
show an effect neither of CCR5-D32 nor of CCR2 in the
Caucasian cohort they studied (about 250 Caucasian indi-
viduals). Smith et al. [16], Kostrikis et al. [28] and Meyer et
al. [29] found an effect for both CCR5-D32 and CCR2-64I
(675, 110 and 506 individuals, respectively), however, by
using compounds genotypes for CCR5, CCR2 and SDF-1 in
the latter study [29]. A recent publication on the meta-
analysis of CCR5-D32 and CCR2-64I alleles [30] confirms
that both CCR5 and CCR2 polymorphisms are associated
with slower progression: the total number of seroconverters

studied reaches 1750. In that meta-analysis it appeared that
each cohort did not necessarily exhibit an association with
AIDS progression and effective associations depended on the
origin of the cohort and on the route of infection [30]. In the
works previously cited [16,22,28,29] the route of infection
was mainly sexual.

If we compare the results on longitudinal cohorts with the
ones obtained on extreme cohorts, we observe that the
CCR5-D32 association has always been confirmed in all
extreme cohorts studied [26,31,32]. The CCR2-64I effect
seems weaker in case-control studies than in longitudinal
cohorts [26,31], however, it becomes obvious when using
compound genotypes of CCR5 and CCR2.

A SNP located in the CCR5 promoter, called CCR5P, was
observed by two groups on a cohort of 417 seroconverters
[17] and on a cohort of 694 seroconverters [18]. The
CCR5P-1 allele is associated with faster progression to
AIDS. Its effect is recessive in Caucasian seroconverter co-
horts [18] while it seems dominant in African–American
cohorts [33]. To analyze this association the authors have
observed that the protective alleles CCR5-D32 and CCR2-
64I are never on the same chromosome, and also never
together with CCR5P-+. They distinguished among four dif-
ferent haplotypes (CCR5P-1/CCR5-+/CCR2-+, CCR5P-
1/CCR5-+/CCR2-64I, CCR5P-1/CCR5-D32/CCR2-+,
CCR5P-+/CCR5-+/CCR2-+) to observe the strongest ef-
fects. This effect has been confirmed in the transversal GRIV
study (manuscript in preparation).

Finally, a mutation of the CX3CR1 protein was found to
be associated with slower progression in a seroconverter
study involving 473 patients [34]. However, the effect has not
been confirmed in other longitudinal cohorts [35] and it was
not observed either in the GRIV transversal observations
[27].

3.1.3. Analysis of the possible causes for discrepancies
We have seen with HLA the need for large numbers of

subjects in the cohorts. The lack of robustness of the data is
explained by the multiple alleles (more than 10 per gene)
leading to a wider variability of distribution for each cohort
and also statistically weaker associations since smaller num-
ber of patients are involved for each allele. The polymor-
phisms in the chemokine receptors seemed more robust since
they were confirmed in most studies and it fits with the fact
that these polymorphisms have a larger representation of
patients per allele. However, some large studies [22] exhib-
ited results on CCR5 and CCR2 different than those of most
published works and it suggests that a longitudinal cohort of
size 200 might not be necessary large enough to draw reliable
results. In the case of CCR5P-1, it is necessary to consider
haplotypes to observe an effect of the multi-site region. It is a
privileged case since high linkage disequilibrium within
these closely spaced SNP does not fragment the groups
carrying the CCR5 and CCR2 protective alleles, thus con-
serving their power. The CX3CR1 case is interesting since
this longitudinal study involved 426 seroconverter patients. It
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was not confirmed by other longitudinal and transversal
studies [27,35] probably because of the rather limited
P-value for significance (P = 0.04) compared to other signifi-
cant polymorphisms.

3.2. A model to transpose transversal studies into
longitudinal studies

3.2.1. Representation of the problem in statistical terms
The variant allele of some polymorphisms may slow down

the progress of certain pathologies. There exist three major
models to compute the influence of a gene polymorphism in
an association studies: the dominant model which counts the
individuals carrying a given allele, the recessive model which
counts the homozygous individuals for a given allele, and the
allelic frequency model which counts the number of the
given allele. In the present study, we have set-up the param-
eters of our model thanks to the results obtained with two
gene polymorphisms, the 32 bp deletion of CCR5 and the
mutation Pro187Ser of NQO1 (NAD(P)H quinone oxi-
doreductase) [36]. In brief, NQO1 is a cytosolic enzyme
involved in oxidative stress that catalyses the metabolic
detoxication of quinones and their derivatives, and it has also
been implicated in susceptibility to TNFa-mediated apopto-
sis [37].

We call X, the random time elapsed between an initial
event, which may be, but is not necessarily, the onset of a
disease, and some terminal stage for it, which may be, but is
not necessarily, death. In general, the effect of the allele
cannot be proved by a simple comparison, on a cohort of
patients, of the distributions of X between the two kinds of
patients: those who have and those who do not have the
variant allele. The reason for this is that the size necessary for
a cohort to give evidence for this fact should be much bigger
than the usual size of the cohorts under study. One explana-
tion is that, when the protected patients, called the SP, are
relatively rare, even if the effect of the allele is very impor-
tant, it is generally hidden by the overall behavior of the
cohort under study as well as by the right censoring of the
data.

Instead of using only the longitudinal study of a whole
cohort, we propose here to consider, together with a cohort
study, an independent case-control study involving two
samples of the patients having extreme behaviors and for
which (at least part of) the genotype is known. The first
sample, called FP is a sample of the patients who have
experienced a fast progression of the disease and the second
one, called SP, is a sample of the patients having experienced
a slow progression of the disease. The first sample is re-
stricted to patients such that X < t0, and the second sample to
patients such that X > t1, for some fixed t0 and t1 such that
t0 < t1. The proportions of patients having such extreme
behaviors are respectively, pFP and pSP. The cohort study
provides us with estimates for those parameters and their
standard errors through a Kaplan–Meier estimate of the sur-
vival function of X, taking into account possible right censor-

ing, and its confidence intervals at t0 and t1. The case-control
study gives us estimates of the proportions of the mutant
allele among FP and SP, respectively denoted p1FP and p1SP
and their standard errors. The problem is to find a model for
the laws of X under Z = 0 and Z = 1 giving coherent results for
the cohort and the case-control data, the difference of the
behavior between FP and SP being explained by the disparity
of the proportions of the allele and the disparity of the
survival functions S0 and S1.

Actually, t0 and t1 are chosen wide apart in such a way
that pFP + pSP is a small proportion of the entire population
of patients, usually smaller than 10%. This means that when
we compare two samples of respective sizes nFP and nSP, the
size of the cohort necessary to achieve the same level of
evidence would be more than ten times the sum nFP + nSP.

3.2.2. Building the model

Let us consider a specific disease whose evolution goes
towards a defined final stage after a time X. We assume that
the distribution of the random variable X depends on a mutant
allele of some gene g, whose proportion p1 in the general
population is estimated on a cohort. Here, Z is a variable
whose value is 1 when the mutant allele is present and 0
otherwise. The survival functions of X conditional on Z = 0
and Z = 1 are respectively, denoted S0 and S1:

S0� t � = P� X ≥ t�Z = 0 �,

S1� t � = P� X ≥ t�Z = 1 �.
The problem is to test H0: S1 = S0 against H1: S1 > S0.
The survival function of X in the entire population is Sg

such that:

Sg� t � = p1 × S1� t � + � 1 − p1 � × S0� t �.

The FP is defined as the patients who reach the final stage
of the disease before some fixed time t0. The SP is defined as
the patients who did not reach the final stage after a fixed
period of time t1 (t1 > t0). The proportions of FP and SP in
the entire population of patients are respectively, denoted by
pFP and pSP. Actually, the two probabilities pFP = 1–Sg(t0)
and pSP = Sg(t1) are estimated from the cohort by using
Kaplan–Meier estimator for Sg which allows to take into
account right censored data. It implies that the global survival
function Sg and the survival functions conditional on the
mutant gene must obey the following equations:

Sg� t0 � = 1 − pFP = p1 × S1� t0 � + � 1 − p1 � × S0� t0 �,

Sg� t1 � = pSP = p1 × S1� t1 � + � 1 − p1 � × S0� t1 �,

P� Z = 1�X ≤ t0 �

= P� Z = 1, X ≤ t0 �/P� X ≤ t0 �,

= P� Z = 1 � × P� X ≤ t0�Z = 1 �/P� X ≤ t0 �, � S �

= p1 × � 1 − S1� t0 � �/� 1 − Sg� t0 � �,

P� Z = 1�X ≥ t1 �

= P� Z = 1, X ≥ t1 �/P� X ≤ t1 �,

= P� Z = 1 � × P� X ≥ t1�Z = 1 �/P� X ≤ t1 �,

= p1 × � 1 − S1� t1 � �/� 1 − Sg� t1 � �.
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System of equations (S) gives linear equations for the four
unknowns S0(t0), S0(t1), S1(t0), S1(t1) as functions of p1,
pFP, pSP and the proportions of allele Z = 1 among FP and
SP, respectively, denoted p1FP and p1SP. It follows that:

S0� t1 � = � pSP × � 1 − p1SP � �/� 1 − p1 �,

S1� t1 � = S0� t1 � × � p1SP × � 1 − p1 � �/

� p1 × � 1 − p1SP � �, � S′ �
S1� t0 � = � p1 − p1FP × pFP × pFP �/p1,

S0� t0 � = � 1 − pFP − p1 × S1� t0 � �/� 1 − p1 �.

In order to find a model that can fulfill those equations, we
propose to use Weibull distributions for the conditional sur-
vival functions S0 and S1, with respective scale parameters
1/k0 and 1/k1 and shape parameters �0 and �1:

S0� t � = exp� − � k0 × t ��0
�, � M �

S1� t � = exp� − � k1 × t ��1
�.

Let a0 = S0(t0), b0 = S0(t1), a1 = S1(t0), b1 = S1(t1). Then
function S0 meets the two points (t0, a0) and (t1, b0) and
function S1 meets the two points (t0, a1) and (t1, b1). From
Eqs. (S') and (M) we deduce the values of the four parameters
k0, k1, �0, and �1 from the values of the initial parameters
p1, pFP, pSP, p1FP, and p1SP. Denoting ll the function
u → log(log(u)), we finally get:

log � k0 � = � ll� a0 � log � t1 � − ll� b0 � log � t0 � �

/� ll� b0 � − ll� a0 � �,

log � k1 � = � ll� a1 � log � t1 � − ll� b1 � log � t0 � �

/� ll� b1 � − ll� a1 � �, � S ″
�

�0 = − ll� b0 �/� log � k0 � + log� t1 � �,

�1 = − ll� b1 �/� log � k1 � + log� t1 � �.

Replacing in Eq. (S''), the true values of the initial param-
eters p1, pFP, pSP, p1FP, and p1SP by their estimates from
the cohort data, we obtain estimates of k0, k1, �0 and �1, and
their standard errors may be deduced from the standard
errors of the initial parameters. We have thus confidence
bands for the distributions S0 and S1, which depend on the
size of the all-stage patients’ cohort and the extreme patients
samples. Those confidence bands for the distributions S0 and
S1, may overlap or not, giving evidence, in the latter case, of
an effect of the allele: we can then reject H0 for H1 if S1 > S0.
At this stage, one may define the smallest difference between
S0 and S1, which makes sense in order to declare that the
allele is protective.

3.2.3. Proving and quantifying the effect of the allele:
simulations

Once the parametric model based both on the longitudinal
cohorts and the case-control transversal data has been estab-
lished (see Fig. 1A, C), one can make simulations according
to that model, by generating an exact survival time (between
infection and death) for SPs and FPs, still respecting the pFP,
pSP, p1, p1FP, and p1SP proportions. For this, we use S0 and
S1 as survival functions respectively for people carrying or
not the allele. A number ns of simulations of samples of size

n of the time to onset of the terminal event, including right
censoring, is performed, based on the model built on the joint
analysis of the cohort and the extreme cases transversal data.
The data thus generated are shown to be coherent with the
initial cohort and the initial transversal data. A non-
parametric test of the slowing down effect of the mutant
allele is performed, using Kaplan–Meier survival confidence
bands. Then, if the efficiency of the mutant allele is thus
proven, in order to quantify the effect of the presence of the
allele Z on the progression of the disease through a single real
parameter b, one assumes a Cox proportional hazard model.
It means that the survival S, conditional on Z is modeled as Sc
such that:

Sc� t�Z = z � = S0� t �exp� b.z � b real, z = 0 or 1. � M′ �
Then testing H0: b = 0 against H1: b < 0 one gets the

relative risk q for people carrying the allele versus the ones
without the allele, of the terminal event to happen, which is
equal to q = exp(b).

3.2.4. Application to AIDS
The random variable X is the time elapsed between the

initial event, which is the infection time and the terminal
event, which is the achievement of a CD4 level below 500.
The SPs are defined as those people who still have a CD4
level over 500 after t1 = 14 years, and the FPs as those people
who have less than 300 CD4 at a time smaller than 3 years.
Thus, in that case, t0 = 3 and t1 = 14. The proportions of SPs
and FPs have been estimated respectively, as pSP = 0.01 and
pFP = 0.05. From the transversal data on SP and FP, the two
genes alleles CCR5-D32 and NQO1-187Ser are suspected to
exert a protective effect against disease.

(a) Testing for a potential longitudinal effect of CCR5.
The proportion of carriers of the mutant CCR5-D32 protec-
tive allele is known experimentally to be as p1 = 0.18 in the
entire population [13–15], the proportion of this allele among
SPs is P(Z = 1 | X > t1) = 0.25 and among FPs is
P(Z = 1 | X ≤ t0) = 0.05 (from the GRIV data). This allows for
a computation of the respective survival functions S0 and S1
as well as the relative risk exp(b).

We obtain the estimated Weibull parameters of S0,
�0 = 2.835, k0 = 0.1233, and of S1, �1 = 3.706 and
k1 = 0.1057. This leads to the survival curves S0 and S1
shown in Fig. 1A.

We now generated randomly precise survival times for
FPs and SPs still respecting the proportions p1, p1FP, p1SP,
pFP, and pSP and performed simulations according to the
previous law. For ns = 1000 such simulations of a sample of
size n = 500, we show evidence of an effect of the CCR5-D32
protective allele at a level of 90%. We also obtain a relative
risk equal to 0.67, with a mean 95% confidence interval equal
to [0.5493–0.8432], confirming the protective effect of this
allele in the longitudinal analysis, with a median excellent
P-value equal to 0.00172. Fig. 1B presents an example of the
estimated survival curve for 500 subjects with the corre-
sponding intervals for 95% confidence: the two confidence
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intervals for the carriers of CCR5-D32 vs. non-carriers are
clearly separated.

However, we computed the minimal size of a simulated
cohort according to the survival functions S0 and S1 able to
show evidence, at the more usual 95% level, of the effect of
this mutant allele: it is equal to n = 600. Even if the sample
size is as small as 250, and for ns = 1000 simulations, the
protective effect of the mutant allele of CCR5-D32 will be
observed in 59% of the cases. The median P-value we ob-
tained is equal to 0.0287 and the mean 95% confidence
interval for the relative risk is equal to [0.5071–0.9353].

(b) Testing for a potential longitudinal effect of NQO1.
The proportion of the potentially protective NQO1-187Ser
mutant is p1 = 0.346 in the entire population. Its proportion
among SPs is P(Z = 1 | X > t1) = 0.41 and among FPs is
P(Z = 1 | X ≤ t0) = 0.28. This allows the computation of the
respective survival functions S1 as well as the relative risk
exp(b). We obtain the estimated Weibull parameters of S0,
�0 = 2.640, k0 = 0.1124, and of S1, �1 = 2.796 and
k1 = 0.1064. The representation of the survival curves for
NQO1 is given in Fig. 1C.

For ns = 1000 simulations on a sample of size n = 500, we
obtain a relative risk equal to 0.89, with a mean 95% confi-
dence interval equal to [0.7405–1.076] for the mutant allele
of NQO1-187Ser, thus showing no evidence for the protec-
tive effect of this allele. The median P-value was found to be
equal to 0.2. This does not allow us to reject the null hypoth-
esis (P-value equal to 0.20) that the mutant allele of NQO1
has no effect on disease progression. Fig. 1D presents an
example of the estimated survival curve for a simulation on
500 subjects with the intervals for 95% confidence: the con-
fidence intervals for the carriers of NQO1-187Ser vs. WT
individuals are clearly overlapping.

If we increase the size of the samples to n = 1000 patients,
still no significant effect of the allele is proven (median
P-value is 0.0586) with a mean 95% confidence interval for
the relative risk equal to [0.7405–1.076] covering 1. With
ns = 1000 simulations of a sample size of n = 4000, the mean
95% confidence interval for the relative risk is
[0.8213–0.939] which does not cover 1. This size of n = 4000
is the smallest size of a simulated cohort according to the
survival functions S0 and S1 able to show, at a level of 95%,

Fig. 1. (A) Survival curves S0 and S1 obtained from Eq. (M) from the raw data pFP, pSP, p1, p1FP, and p1SP. In red is the curve for the mutant CCR5-D32
carriers, in blue is the curve for the WT individuals. (B) Example of a survival curve obtained from a simulation for a cohort of size 500 respecting the data pFP,
pSP, p1, p1FP, and p1SP proportions. The middle red curve for the CCR5-D32 carriers is surrounded by its 95% confidence interval curves, and the middle blue
curve for the WT subjects is surrounded by its 95% confidence interval curves. The confidence intervals are clearly separated. (C) Survival curves S0 and S1
obtained from Eq. (M) from the raw data pFP, pSP, p1, p1FP, and p1SP. In red is the curve for the mutant NQO1-187Ser carriers, in blue is the curve for the WT
individuals. (D) Example of a survival curve obtained from a simulation for a cohort of size 500 respecting the data pFP, pSP, p1, p1FP, and p1SP proportions.
The middle red curve for the NQO1-187Ser carriers is surrounded by its 95% confidence interval curves, and the middle blue curve for the WT subjects is
surrounded by its 95% confidence interval curves. In that case, the confidence intervals are totally overlapping.
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an effect of the NQO1-187Ser mutant allele. However, a
parametric model for an observed cohort of this size may be
unrealistic and we cannot conclude that the size of n = 4000
would allow us to prove an effect of the NQO1-187Ser
mutant allele in 95% of actual cohorts.

4. Discussion and conclusion

The review of the literature has shown that major associa-
tions such as CCR5-D32 were robust in most cohorts; how-
ever, discrepancies arose as soon as small numbers of pa-
tients compared to the number of alleles were at stake such as
in HLA, or when insufficient P-values were found such as in
CX3CR1.

From Table 1, it appears difficult to define a cut-off of
P-values warranting the reliability (i.e. high reproducibility)
of an association identified. For instance, HLA-B57 has been
regularly found associated with slow progression in various
cohorts [4,24–26] but with a P-value higher than 0.01, while
HLA-A24 was found only once associated with rapid pro-
gression with the low P-value 0.004. A threshold of 0.001 for
P-values would certainly bring much reliability underlining
the associations of HLA-B14, HLA-B22, HLA-B27, HLA-
B35, CCR5-D32, CCR2-64I (Table 1). Since genomic stud-
ies aim at identifying the pathways used by the virus for its
survival and its pathogenicity, presenting data with P-values
comprised within 0.001 and 0.05 might also be relevant: in
such cases, one should emphasize that the data need to be
confirmed by other studies.

In most of the published studies, Bonferroni corrections
were rarely applied. Published results correspond to a small
percentage of the genotypes effectively analyzed in research
laboratories and very few studies would remain significant if
one would apply strictly the Bonferroni principle. However,
this is defendable when one knows that the candidate genes
studied are the most relevant ones biologically. Until now, the
only clear biological explanation for an association between
a genetic polymorphism and AIDS progression has been
obtained for the deletion CCR5-D32, which inactivates the
receptor.

The case of the multiple polymorphisms in the
CCR5/CCR2 locus (chromosome 5) shows how the use of
haplotypes might help unravel new associations or increase
their significance [17,18]. On the one hand, haplotypes will
diminish the strength of the studies by dissecting the popula-
tion in smaller groups; on the other hand it can reveal con-
cealed effects of some polymorphisms as for CCR5P. The
study of single SNPs remains, however, indispensable since a
biological effect can be linked with a single nucleotide muta-
tion (for instance fixation of a transcription factor on a pro-
moter).

Overall our review has shown that strong associations
found in longitudinal studies are also found in transversal
studies. To assess the reciprocity of this statement, we have
developed a protocol for integrating transversal with longitu-
dinal data. In order to operate such a transposition, various

models are available: we used the Weibull model, which
provides a flexible family of survival functions. Knowing the
allelic distributions from GRIV patients and controls for the
two genes CCR5 and NQO1, we set the parameters of the
model to fit with the longitudinal data available on these two
genes from all-stage patients’ cohorts.

When there is evidence of the effect of an allele through
the identification of a model integrating both the longitudinal
cohort data and the extreme cases transversal observations,
then the disparity of the survival functions with and without
the given allele gives credit to the protective effect of the
allele. The relative risk of the people carrying the allele vs.
the ones without it, to develop the terminal event, may then
be estimated through a Cox proportional hazard model used
on a simulation of the obtained coherent model. Actually,
though Cox model assumes that the effect of the allele on the
risk is constant in time, which is not always true, this relative
risk is an easy indicator of the amount of the protective effect
of the allele. We will try to take into account a possible
time-dependency of the risk in future models.

The simulations based on our model suggest that the
smallest sample size allowing for a cohort to show a 95%
significant difference between the survival curves S1 and S0
with and without the mutant allele CCR5-D32 is about
n = 600 while for NQO1-187Ser it is n = 4000.As CCR5-D32
is rarer than NQO1-187Ser, it underlines the better protection
given by CCR5-D32 compared to NQO1-187Ser. NQO1
gives an example how an effect can be observed in a trans-
versal study but not validated in longitudinal studies because
of its weakness. Interestingly, the size of 600 obtained for a
95% confidence interval in the CCR5-D32 allele association
is fully compatible with the meta-analysis gathering all
CCR5-D32 data where four studies have no effect while five
studies exhibit a protective effect [30]. In particular, there
was a study on a cohort of 254 patients with no effect of
CCR5-D32 [22].

There may be another difficulty for proving the effect of
an allele using only longitudinal studies. Real cohorts surely
suffer from truncation in two respects: FPs may be too fast to
enter the cohort and SPs may be skipped also from the cohort
as they show poor signs of being ill. Our simulated cohorts
are more “perfect” ones in the sense that they do not suffer
from any truncation even if we have assumed to suffer right
censoring which is very natural when SP are expected.
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